MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Unicode version

Theorem bpos1lem 24073
Description: Lemma for bpos1 24074. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1  |-  ( E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N
) )  ->  ph )
bpos1.2  |-  ( N  e.  ( ZZ>= `  P
)  ->  ph )
bpos1.3  |-  P  e. 
Prime
bpos1.4  |-  A  e. 
NN0
bpos1.5  |-  ( A  x.  2 )  =  B
bpos1.6  |-  A  < 
P
bpos1.7  |-  ( P  <  B  \/  P  =  B )
Assertion
Ref Expression
bpos1lem  |-  ( N  e.  ( ZZ>= `  A
)  ->  ph )
Distinct variable groups:    N, p    P, p
Allowed substitution hints:    ph( p)    A( p)    B( p)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6  |-  P  e. 
Prime
2 prmnn 14596 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2ax-mp 5 . . . . 5  |-  P  e.  NN
43nnzi 10961 . . . 4  |-  P  e.  ZZ
5 eluzelz 11168 . . . 4  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  ZZ )
6 eluz 11172 . . . 4  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  P )  <->  P  <_  N ) )
74, 5, 6sylancr 667 . . 3  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( N  e.  ( ZZ>= `  P )  <->  P  <_  N ) )
8 bpos1.2 . . 3  |-  ( N  e.  ( ZZ>= `  P
)  ->  ph )
97, 8syl6bir 232 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( P  <_  N  ->  ph ) )
103nnrei 10618 . . . . . . . 8  |-  P  e.  RR
1110a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  e.  RR )
12 bpos1.5 . . . . . . . . 9  |-  ( A  x.  2 )  =  B
13 bpos1.4 . . . . . . . . . . 11  |-  A  e. 
NN0
1413nn0rei 10880 . . . . . . . . . 10  |-  A  e.  RR
15 2re 10679 . . . . . . . . . 10  |-  2  e.  RR
1614, 15remulcli 9656 . . . . . . . . 9  |-  ( A  x.  2 )  e.  RR
1712, 16eqeltrri 2514 . . . . . . . 8  |-  B  e.  RR
1817a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
19 eluzelre 11169 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  RR )
20 remulcl 9623 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  x.  N
)  e.  RR )
2115, 19, 20sylancr 667 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 2  x.  N )  e.  RR )
22 bpos1.7 . . . . . . . . 9  |-  ( P  <  B  \/  P  =  B )
2310, 17leloei 9750 . . . . . . . . 9  |-  ( P  <_  B  <->  ( P  <  B  \/  P  =  B ) )
2422, 23mpbir 212 . . . . . . . 8  |-  P  <_  B
2524a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  <_  B )
2613nn0cni 10881 . . . . . . . . 9  |-  A  e.  CC
27 2cn 10680 . . . . . . . . 9  |-  2  e.  CC
2826, 27, 12mulcomli 9649 . . . . . . . 8  |-  ( 2  x.  A )  =  B
29 eluzle 11171 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  A
)  ->  A  <_  N )
30 2pos 10701 . . . . . . . . . . . 12  |-  0  <  2
3115, 30pm3.2i 456 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
32 lemul2 10457 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  N 
<->  ( 2  x.  A
)  <_  ( 2  x.  N ) ) )
3314, 31, 32mp3an13 1351 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( A  <_  N  <->  ( 2  x.  A )  <_ 
( 2  x.  N
) ) )
3419, 33syl 17 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( A  <_  N  <->  ( 2  x.  A )  <_  (
2  x.  N ) ) )
3529, 34mpbid 213 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 2  x.  A )  <_ 
( 2  x.  N
) )
3628, 35syl5eqbrr 4460 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  B  <_  ( 2  x.  N ) )
3711, 18, 21, 25, 36letrd 9791 . . . . . 6  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  <_  ( 2  x.  N ) )
3837anim2i 571 . . . . 5  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  -> 
( N  <  P  /\  P  <_  ( 2  x.  N ) ) )
39 breq2 4430 . . . . . . 7  |-  ( p  =  P  ->  ( N  <  p  <->  N  <  P ) )
40 breq1 4429 . . . . . . 7  |-  ( p  =  P  ->  (
p  <_  ( 2  x.  N )  <->  P  <_  ( 2  x.  N ) ) )
4139, 40anbi12d 715 . . . . . 6  |-  ( p  =  P  ->  (
( N  <  p  /\  p  <_  ( 2  x.  N ) )  <-> 
( N  <  P  /\  P  <_  ( 2  x.  N ) ) ) )
4241rspcev 3188 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  <  P  /\  P  <_  ( 2  x.  N
) ) )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
431, 38, 42sylancr 667 . . . 4  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
44 bpos1.1 . . . 4  |-  ( E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N
) )  ->  ph )
4543, 44syl 17 . . 3  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  ->  ph )
4645expcom 436 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( N  <  P  ->  ph ) )
47 lelttric 9740 . . 3  |-  ( ( P  e.  RR  /\  N  e.  RR )  ->  ( P  <_  N  \/  N  <  P ) )
4810, 19, 47sylancr 667 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( P  <_  N  \/  N  < 
P ) )
499, 46, 48mpjaod 382 1  |-  ( N  e.  ( ZZ>= `  A
)  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1870   E.wrex 2783   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   RRcr 9537   0cc0 9538    x. cmul 9543    < clt 9674    <_ cle 9675   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   Primecprime 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-prm 14594
This theorem is referenced by:  bpos1  24074
  Copyright terms: Public domain W3C validator