MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Unicode version

Theorem bpos1lem 21019
Description: Lemma for bpos1 21020. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1  |-  ( E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N
) )  ->  ph )
bpos1.2  |-  ( N  e.  ( ZZ>= `  P
)  ->  ph )
bpos1.3  |-  P  e. 
Prime
bpos1.4  |-  A  e. 
NN0
bpos1.5  |-  ( A  x.  2 )  =  B
bpos1.6  |-  A  < 
P
bpos1.7  |-  ( P  <  B  \/  P  =  B )
Assertion
Ref Expression
bpos1lem  |-  ( N  e.  ( ZZ>= `  A
)  ->  ph )
Distinct variable groups:    N, p    P, p
Allowed substitution hints:    ph( p)    A( p)    B( p)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6  |-  P  e. 
Prime
2 prmnn 13037 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2ax-mp 8 . . . . 5  |-  P  e.  NN
43nnzi 10261 . . . 4  |-  P  e.  ZZ
5 eluzelz 10452 . . . 4  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  ZZ )
6 eluz 10455 . . . 4  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  P )  <->  P  <_  N ) )
74, 5, 6sylancr 645 . . 3  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( N  e.  ( ZZ>= `  P )  <->  P  <_  N ) )
8 bpos1.2 . . 3  |-  ( N  e.  ( ZZ>= `  P
)  ->  ph )
97, 8syl6bir 221 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( P  <_  N  ->  ph ) )
103nnrei 9965 . . . . . . . 8  |-  P  e.  RR
1110a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  e.  RR )
12 bpos1.5 . . . . . . . . 9  |-  ( A  x.  2 )  =  B
13 bpos1.4 . . . . . . . . . . 11  |-  A  e. 
NN0
1413nn0rei 10188 . . . . . . . . . 10  |-  A  e.  RR
15 2re 10025 . . . . . . . . . 10  |-  2  e.  RR
1614, 15remulcli 9060 . . . . . . . . 9  |-  ( A  x.  2 )  e.  RR
1712, 16eqeltrri 2475 . . . . . . . 8  |-  B  e.  RR
1817a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
19 eluzelre 10453 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  RR )
20 remulcl 9031 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  x.  N
)  e.  RR )
2115, 19, 20sylancr 645 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 2  x.  N )  e.  RR )
22 bpos1.7 . . . . . . . . 9  |-  ( P  <  B  \/  P  =  B )
2310, 17leloei 9146 . . . . . . . . 9  |-  ( P  <_  B  <->  ( P  <  B  \/  P  =  B ) )
2422, 23mpbir 201 . . . . . . . 8  |-  P  <_  B
2524a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  <_  B )
2613nn0cni 10189 . . . . . . . . 9  |-  A  e.  CC
27 2cn 10026 . . . . . . . . 9  |-  2  e.  CC
2826, 27, 12mulcomli 9053 . . . . . . . 8  |-  ( 2  x.  A )  =  B
29 eluzle 10454 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  A
)  ->  A  <_  N )
30 2pos 10038 . . . . . . . . . . . 12  |-  0  <  2
3115, 30pm3.2i 442 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
32 lemul2 9819 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  N 
<->  ( 2  x.  A
)  <_  ( 2  x.  N ) ) )
3314, 31, 32mp3an13 1270 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( A  <_  N  <->  ( 2  x.  A )  <_ 
( 2  x.  N
) ) )
3419, 33syl 16 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( A  <_  N  <->  ( 2  x.  A )  <_  (
2  x.  N ) ) )
3529, 34mpbid 202 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 2  x.  A )  <_ 
( 2  x.  N
) )
3628, 35syl5eqbrr 4206 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  B  <_  ( 2  x.  N ) )
3711, 18, 21, 25, 36letrd 9183 . . . . . 6  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  <_  ( 2  x.  N ) )
3837anim2i 553 . . . . 5  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  -> 
( N  <  P  /\  P  <_  ( 2  x.  N ) ) )
39 breq2 4176 . . . . . . 7  |-  ( p  =  P  ->  ( N  <  p  <->  N  <  P ) )
40 breq1 4175 . . . . . . 7  |-  ( p  =  P  ->  (
p  <_  ( 2  x.  N )  <->  P  <_  ( 2  x.  N ) ) )
4139, 40anbi12d 692 . . . . . 6  |-  ( p  =  P  ->  (
( N  <  p  /\  p  <_  ( 2  x.  N ) )  <-> 
( N  <  P  /\  P  <_  ( 2  x.  N ) ) ) )
4241rspcev 3012 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  <  P  /\  P  <_  ( 2  x.  N
) ) )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
431, 38, 42sylancr 645 . . . 4  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
44 bpos1.1 . . . 4  |-  ( E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N
) )  ->  ph )
4543, 44syl 16 . . 3  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  ->  ph )
4645expcom 425 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( N  <  P  ->  ph ) )
47 lelttric 9136 . . 3  |-  ( ( P  e.  RR  /\  N  e.  RR )  ->  ( P  <_  N  \/  N  <  P ) )
4810, 19, 47sylancr 645 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( P  <_  N  \/  N  < 
P ) )
499, 46, 48mpjaod 371 1  |-  ( N  e.  ( ZZ>= `  A
)  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946    x. cmul 8951    < clt 9076    <_ cle 9077   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   Primecprime 13034
This theorem is referenced by:  bpos1  21020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-prm 13035
  Copyright terms: Public domain W3C validator