MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Unicode version

Theorem bpos1lem 22626
Description: Lemma for bpos1 22627. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1  |-  ( E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N
) )  ->  ph )
bpos1.2  |-  ( N  e.  ( ZZ>= `  P
)  ->  ph )
bpos1.3  |-  P  e. 
Prime
bpos1.4  |-  A  e. 
NN0
bpos1.5  |-  ( A  x.  2 )  =  B
bpos1.6  |-  A  < 
P
bpos1.7  |-  ( P  <  B  \/  P  =  B )
Assertion
Ref Expression
bpos1lem  |-  ( N  e.  ( ZZ>= `  A
)  ->  ph )
Distinct variable groups:    N, p    P, p
Allowed substitution hints:    ph( p)    A( p)    B( p)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6  |-  P  e. 
Prime
2 prmnn 13771 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2ax-mp 5 . . . . 5  |-  P  e.  NN
43nnzi 10675 . . . 4  |-  P  e.  ZZ
5 eluzelz 10875 . . . 4  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  ZZ )
6 eluz 10879 . . . 4  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  P )  <->  P  <_  N ) )
74, 5, 6sylancr 663 . . 3  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( N  e.  ( ZZ>= `  P )  <->  P  <_  N ) )
8 bpos1.2 . . 3  |-  ( N  e.  ( ZZ>= `  P
)  ->  ph )
97, 8syl6bir 229 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( P  <_  N  ->  ph ) )
103nnrei 10336 . . . . . . . 8  |-  P  e.  RR
1110a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  e.  RR )
12 bpos1.5 . . . . . . . . 9  |-  ( A  x.  2 )  =  B
13 bpos1.4 . . . . . . . . . . 11  |-  A  e. 
NN0
1413nn0rei 10595 . . . . . . . . . 10  |-  A  e.  RR
15 2re 10396 . . . . . . . . . 10  |-  2  e.  RR
1614, 15remulcli 9405 . . . . . . . . 9  |-  ( A  x.  2 )  e.  RR
1712, 16eqeltrri 2514 . . . . . . . 8  |-  B  e.  RR
1817a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
19 eluzelre 10876 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  N  e.  RR )
20 remulcl 9372 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  N  e.  RR )  ->  ( 2  x.  N
)  e.  RR )
2115, 19, 20sylancr 663 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 2  x.  N )  e.  RR )
22 bpos1.7 . . . . . . . . 9  |-  ( P  <  B  \/  P  =  B )
2310, 17leloei 9496 . . . . . . . . 9  |-  ( P  <_  B  <->  ( P  <  B  \/  P  =  B ) )
2422, 23mpbir 209 . . . . . . . 8  |-  P  <_  B
2524a1i 11 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  <_  B )
2613nn0cni 10596 . . . . . . . . 9  |-  A  e.  CC
27 2cn 10397 . . . . . . . . 9  |-  2  e.  CC
2826, 27, 12mulcomli 9398 . . . . . . . 8  |-  ( 2  x.  A )  =  B
29 eluzle 10878 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  A
)  ->  A  <_  N )
30 2pos 10418 . . . . . . . . . . . 12  |-  0  <  2
3115, 30pm3.2i 455 . . . . . . . . . . 11  |-  ( 2  e.  RR  /\  0  <  2 )
32 lemul2 10187 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  <_  N 
<->  ( 2  x.  A
)  <_  ( 2  x.  N ) ) )
3314, 31, 32mp3an13 1305 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( A  <_  N  <->  ( 2  x.  A )  <_ 
( 2  x.  N
) ) )
3419, 33syl 16 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( A  <_  N  <->  ( 2  x.  A )  <_  (
2  x.  N ) ) )
3529, 34mpbid 210 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 2  x.  A )  <_ 
( 2  x.  N
) )
3628, 35syl5eqbrr 4331 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  A
)  ->  B  <_  ( 2  x.  N ) )
3711, 18, 21, 25, 36letrd 9533 . . . . . 6  |-  ( N  e.  ( ZZ>= `  A
)  ->  P  <_  ( 2  x.  N ) )
3837anim2i 569 . . . . 5  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  -> 
( N  <  P  /\  P  <_  ( 2  x.  N ) ) )
39 breq2 4301 . . . . . . 7  |-  ( p  =  P  ->  ( N  <  p  <->  N  <  P ) )
40 breq1 4300 . . . . . . 7  |-  ( p  =  P  ->  (
p  <_  ( 2  x.  N )  <->  P  <_  ( 2  x.  N ) ) )
4139, 40anbi12d 710 . . . . . 6  |-  ( p  =  P  ->  (
( N  <  p  /\  p  <_  ( 2  x.  N ) )  <-> 
( N  <  P  /\  P  <_  ( 2  x.  N ) ) ) )
4241rspcev 3078 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  <  P  /\  P  <_  ( 2  x.  N
) ) )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
431, 38, 42sylancr 663 . . . 4  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
44 bpos1.1 . . . 4  |-  ( E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N
) )  ->  ph )
4543, 44syl 16 . . 3  |-  ( ( N  <  P  /\  N  e.  ( ZZ>= `  A ) )  ->  ph )
4645expcom 435 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( N  <  P  ->  ph ) )
47 lelttric 9486 . . 3  |-  ( ( P  e.  RR  /\  N  e.  RR )  ->  ( P  <_  N  \/  N  <  P ) )
4810, 19, 47sylancr 663 . 2  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( P  <_  N  \/  N  < 
P ) )
499, 46, 48mpjaod 381 1  |-  ( N  e.  ( ZZ>= `  A
)  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2721   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   RRcr 9286   0cc0 9287    x. cmul 9292    < clt 9423    <_ cle 9424   NNcn 10327   2c2 10376   NN0cn0 10584   ZZcz 10651   ZZ>=cuz 10866   Primecprime 13768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-n0 10585  df-z 10652  df-uz 10867  df-prm 13769
This theorem is referenced by:  bpos1  22627
  Copyright terms: Public domain W3C validator