Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolyval Structured version   Unicode version

Theorem bpolyval 28359
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
Distinct variable groups:    k, N    k, X

Proof of Theorem bpolyval
Dummy variables  g  m  n  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5812 . . . . . 6  |-  ( # `  dom  c )  e. 
_V
2 nfcv 2616 . . . . . 6  |-  F/_ n
( ( X ^
( # `  dom  c
) )  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )
3 oveq2 6211 . . . . . . 7  |-  ( n  =  ( # `  dom  c )  ->  ( X ^ n )  =  ( X ^ ( # `
 dom  c )
) )
4 oveq1 6210 . . . . . . . . 9  |-  ( n  =  ( # `  dom  c )  ->  (
n  _C  m )  =  ( ( # `  dom  c )  _C  m ) )
5 oveq1 6210 . . . . . . . . . . 11  |-  ( n  =  ( # `  dom  c )  ->  (
n  -  m )  =  ( ( # `  dom  c )  -  m ) )
65oveq1d 6218 . . . . . . . . . 10  |-  ( n  =  ( # `  dom  c )  ->  (
( n  -  m
)  +  1 )  =  ( ( (
# `  dom  c )  -  m )  +  1 ) )
76oveq2d 6219 . . . . . . . . 9  |-  ( n  =  ( # `  dom  c )  ->  (
( c `  m
)  /  ( ( n  -  m )  +  1 ) )  =  ( ( c `
 m )  / 
( ( ( # `  dom  c )  -  m )  +  1 ) ) )
84, 7oveq12d 6221 . . . . . . . 8  |-  ( n  =  ( # `  dom  c )  ->  (
( n  _C  m
)  x.  ( ( c `  m )  /  ( ( n  -  m )  +  1 ) ) )  =  ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) )
98sumeq2sdv 13303 . . . . . . 7  |-  ( n  =  ( # `  dom  c )  ->  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) )  = 
sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) )
103, 9oveq12d 6221 . . . . . 6  |-  ( n  =  ( # `  dom  c )  ->  (
( X ^ n
)  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) ) )  =  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c
( ( ( # `  dom  c )  _C  m )  x.  (
( c `  m
)  /  ( ( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) )
111, 2, 10csbief 3423 . . . . 5  |-  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `  m )  /  (
( n  -  m
)  +  1 ) ) ) )  =  ( ( X ^
( # `  dom  c
) )  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )
12 oveq2 6211 . . . . . . . . . 10  |-  ( m  =  k  ->  (
n  _C  m )  =  ( n  _C  k ) )
13 fveq2 5802 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
c `  m )  =  ( c `  k ) )
14 oveq2 6211 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
n  -  m )  =  ( n  -  k ) )
1514oveq1d 6218 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( n  -  m
)  +  1 )  =  ( ( n  -  k )  +  1 ) )
1613, 15oveq12d 6221 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( c `  m
)  /  ( ( n  -  m )  +  1 ) )  =  ( ( c `
 k )  / 
( ( n  -  k )  +  1 ) ) )
1712, 16oveq12d 6221 . . . . . . . . 9  |-  ( m  =  k  ->  (
( n  _C  m
)  x.  ( ( c `  m )  /  ( ( n  -  m )  +  1 ) ) )  =  ( ( n  _C  k )  x.  ( ( c `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
1817cbvsumv 13295 . . . . . . . 8  |-  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) )  = 
sum_ k  e.  dom  c ( ( n  _C  k )  x.  ( ( c `  k )  /  (
( n  -  k
)  +  1 ) ) )
19 dmeq 5151 . . . . . . . . 9  |-  ( c  =  g  ->  dom  c  =  dom  g )
20 fveq1 5801 . . . . . . . . . . . 12  |-  ( c  =  g  ->  (
c `  k )  =  ( g `  k ) )
2120oveq1d 6218 . . . . . . . . . . 11  |-  ( c  =  g  ->  (
( c `  k
)  /  ( ( n  -  k )  +  1 ) )  =  ( ( g `
 k )  / 
( ( n  -  k )  +  1 ) ) )
2221oveq2d 6219 . . . . . . . . . 10  |-  ( c  =  g  ->  (
( n  _C  k
)  x.  ( ( c `  k )  /  ( ( n  -  k )  +  1 ) ) )  =  ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
2322adantr 465 . . . . . . . . 9  |-  ( ( c  =  g  /\  k  e.  dom  c )  ->  ( ( n  _C  k )  x.  ( ( c `  k )  /  (
( n  -  k
)  +  1 ) ) )  =  ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) )
2419, 23sumeq12dv 13305 . . . . . . . 8  |-  ( c  =  g  ->  sum_ k  e.  dom  c ( ( n  _C  k )  x.  ( ( c `
 k )  / 
( ( n  -  k )  +  1 ) ) )  = 
sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
2518, 24syl5eq 2507 . . . . . . 7  |-  ( c  =  g  ->  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) )  = 
sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
2625oveq2d 6219 . . . . . 6  |-  ( c  =  g  ->  (
( X ^ n
)  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) ) )  =  ( ( X ^ n )  -  sum_ k  e.  dom  g
( ( n  _C  k )  x.  (
( g `  k
)  /  ( ( n  -  k )  +  1 ) ) ) ) )
2726csbeq2dv 3798 . . . . 5  |-  ( c  =  g  ->  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `  m )  /  (
( n  -  m
)  +  1 ) ) ) )  = 
[_ ( # `  dom  c )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
2811, 27syl5eqr 2509 . . . 4  |-  ( c  =  g  ->  (
( X ^ ( # `
 dom  c )
)  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )  =  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
2919fveq2d 5806 . . . . 5  |-  ( c  =  g  ->  ( # `
 dom  c )  =  ( # `  dom  g ) )
3029csbeq1d 3405 . . . 4  |-  ( c  =  g  ->  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  = 
[_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
3128, 30eqtrd 2495 . . 3  |-  ( c  =  g  ->  (
( X ^ ( # `
 dom  c )
)  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )  =  [_ ( # `
 dom  g )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
3231cbvmptv 4494 . 2  |-  ( c  e.  _V  |->  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) )  =  ( g  e. 
_V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
33 eqid 2454 . 2  |- wrecs (  <  ,  NN0 ,  ( c  e.  _V  |->  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) ) )  = wrecs (  <  ,  NN0 ,  ( c  e.  _V  |->  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) ) )
3432, 33bpolylem 28358 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078   [_csb 3398    |-> cmpt 4461   dom cdm 4951   ` cfv 5529  (class class class)co 6203   CCcc 9395   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402    < clt 9533    - cmin 9710    / cdiv 10108   NN0cn0 10694   ...cfz 11558   ^cexp 11986    _C cbc 12199   #chash 12224   sum_csu 13285  wrecscwrecs 27883   BernPoly cbp 28356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-card 8224  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559  df-seq 11928  df-hash 12225  df-sum 13286  df-pred 27792  df-wrecs 27884  df-bpoly 28357
This theorem is referenced by:  bpoly0  28360  bpoly1  28361  bpolycl  28362  bpolysum  28363  bpolydiflem  28364  bpoly2  28367  bpoly3  28368  bpoly4  28369
  Copyright terms: Public domain W3C validator