Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolysum Structured version   Unicode version

Theorem bpolysum 30043
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Distinct variable groups:    k, N    k, X

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 455 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  NN0 )
2 nn0uz 11116 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2552 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  ( ZZ>= ` 
0 ) )
4 elfzelz 11691 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
5 bccl 12382 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
61, 4, 5syl2an 475 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  NN0 )
76nn0cnd 10850 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  CC )
8 elfznn0 11775 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9 simpr 459 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  X  e.  CC )
10 bpolycl 30042 . . . . . 6  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
118, 9, 10syl2anr 476 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( k BernPoly  X )  e.  CC )
12 fznn0sub 11720 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
1312adantl 464 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  -  k )  e. 
NN0 )
14 nn0p1nn 10831 . . . . . . 7  |-  ( ( N  -  k )  e.  NN0  ->  ( ( N  -  k )  +  1 )  e.  NN )
1513, 14syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  NN )
1615nncnd 10547 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  CC )
1715nnne0d 10576 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  =/=  0 )
1811, 16, 17divcld 10316 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( (
k BernPoly  X )  /  (
( N  -  k
)  +  1 ) )  e.  CC )
197, 18mulcld 9605 . . 3  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
20 oveq2 6278 . . . 4  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
21 oveq1 6277 . . . . 5  |-  ( k  =  N  ->  (
k BernPoly  X )  =  ( N BernPoly  X ) )
22 oveq2 6278 . . . . . 6  |-  ( k  =  N  ->  ( N  -  k )  =  ( N  -  N ) )
2322oveq1d 6285 . . . . 5  |-  ( k  =  N  ->  (
( N  -  k
)  +  1 )  =  ( ( N  -  N )  +  1 ) )
2421, 23oveq12d 6288 . . . 4  |-  ( k  =  N  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  =  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )
2520, 24oveq12d 6288 . . 3  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  =  ( ( N  _C  N
)  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) )
263, 19, 25fsumm1 13648 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) ) )
27 bcnn 12372 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
2827adantr 463 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  _C  N
)  =  1 )
29 nn0cn 10801 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  CC )
3029adantr 463 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  CC )
3130subidd 9910 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  -  N
)  =  0 )
3231oveq1d 6285 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  ( 0  +  1 ) )
33 0p1e1 10643 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3432, 33syl6eq 2511 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  1 )
3534oveq2d 6286 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( ( N BernPoly  X )  /  1 ) )
36 bpolycl 30042 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  e.  CC )
3736div1d 10308 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  1 )  =  ( N BernPoly  X )
)
3835, 37eqtrd 2495 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( N BernPoly  X )
)
3928, 38oveq12d 6288 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( 1  x.  ( N BernPoly  X )
) )
4036mulid2d 9603 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 1  x.  ( N BernPoly  X ) )  =  ( N BernPoly  X )
)
4139, 40eqtrd 2495 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( N BernPoly  X ) )
4241oveq2d 6286 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  +  ( N BernPoly  X ) ) )
43 bpolyval 30039 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
4443eqcomd 2462 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )
)
45 expcl 12166 . . . . 5  |-  ( ( X  e.  CC  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  CC )
4645ancoms 451 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( X ^ N
)  e.  CC )
47 fzfid 12065 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
48 fzssp1 11730 . . . . . . . 8  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
49 ax-1cn 9539 . . . . . . . . . 10  |-  1  e.  CC
50 npcan 9820 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5130, 49, 50sylancl 660 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5251oveq2d 6286 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
5348, 52syl5sseq 3537 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
5453sselda 3489 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  ( 0 ... N
) )
5554, 19syldan 468 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5647, 55fsumcl 13637 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5746, 56, 36subaddd 9940 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )  <->  (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) ) )
5844, 57mpbid 210 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) )
5926, 42, 583eqtrd 2499 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   ` cfv 5570  (class class class)co 6270   CCcc 9479   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    - cmin 9796    / cdiv 10202   NNcn 10531   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   ...cfz 11675   ^cexp 12148    _C cbc 12362   sum_csu 13590   BernPoly cbp 30036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-pred 29484  df-wrecs 29576  df-bpoly 30037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator