Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolysum Structured version   Unicode version

Theorem bpolysum 28211
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Distinct variable groups:    k, N    k, X

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  NN0 )
2 nn0uz 10910 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2533 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  ( ZZ>= ` 
0 ) )
4 elfzelz 11468 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
5 bccl 12113 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
61, 4, 5syl2an 477 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  NN0 )
76nn0cnd 10653 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  CC )
8 elfznn0 11496 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9 simpr 461 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  X  e.  CC )
10 bpolycl 28210 . . . . . 6  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
118, 9, 10syl2anr 478 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( k BernPoly  X )  e.  CC )
12 fznn0sub 11502 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
1312adantl 466 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  -  k )  e. 
NN0 )
14 nn0p1nn 10634 . . . . . . 7  |-  ( ( N  -  k )  e.  NN0  ->  ( ( N  -  k )  +  1 )  e.  NN )
1513, 14syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  NN )
1615nncnd 10353 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  CC )
1715nnne0d 10381 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  =/=  0 )
1811, 16, 17divcld 10122 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( (
k BernPoly  X )  /  (
( N  -  k
)  +  1 ) )  e.  CC )
197, 18mulcld 9421 . . 3  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
20 oveq2 6114 . . . 4  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
21 oveq1 6113 . . . . 5  |-  ( k  =  N  ->  (
k BernPoly  X )  =  ( N BernPoly  X ) )
22 oveq2 6114 . . . . . 6  |-  ( k  =  N  ->  ( N  -  k )  =  ( N  -  N ) )
2322oveq1d 6121 . . . . 5  |-  ( k  =  N  ->  (
( N  -  k
)  +  1 )  =  ( ( N  -  N )  +  1 ) )
2421, 23oveq12d 6124 . . . 4  |-  ( k  =  N  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  =  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )
2520, 24oveq12d 6124 . . 3  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  =  ( ( N  _C  N
)  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) )
263, 19, 25fsumm1 13235 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) ) )
27 bcnn 12103 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
2827adantr 465 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  _C  N
)  =  1 )
29 nn0cn 10604 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  CC )
3029adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  CC )
3130subidd 9722 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  -  N
)  =  0 )
3231oveq1d 6121 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  ( 0  +  1 ) )
33 0p1e1 10448 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3432, 33syl6eq 2491 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  1 )
3534oveq2d 6122 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( ( N BernPoly  X )  /  1 ) )
36 bpolycl 28210 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  e.  CC )
3736div1d 10114 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  1 )  =  ( N BernPoly  X )
)
3835, 37eqtrd 2475 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( N BernPoly  X )
)
3928, 38oveq12d 6124 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( 1  x.  ( N BernPoly  X )
) )
4036mulid2d 9419 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 1  x.  ( N BernPoly  X ) )  =  ( N BernPoly  X )
)
4139, 40eqtrd 2475 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( N BernPoly  X ) )
4241oveq2d 6122 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  +  ( N BernPoly  X ) ) )
43 bpolyval 28207 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
4443eqcomd 2448 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )
)
45 expcl 11898 . . . . 5  |-  ( ( X  e.  CC  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  CC )
4645ancoms 453 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( X ^ N
)  e.  CC )
47 fzfid 11810 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
48 fzssp1 11516 . . . . . . . 8  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
49 ax-1cn 9355 . . . . . . . . . 10  |-  1  e.  CC
50 npcan 9634 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5130, 49, 50sylancl 662 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5251oveq2d 6122 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
5348, 52syl5sseq 3419 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
5453sselda 3371 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  ( 0 ... N
) )
5554, 19syldan 470 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5647, 55fsumcl 13225 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5746, 56, 36subaddd 9752 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )  <->  (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) ) )
5844, 57mpbid 210 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) )
5926, 42, 583eqtrd 2479 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   ` cfv 5433  (class class class)co 6106   CCcc 9295   0cc0 9297   1c1 9298    + caddc 9300    x. cmul 9302    - cmin 9610    / cdiv 10008   NNcn 10337   NN0cn0 10594   ZZcz 10661   ZZ>=cuz 10876   ...cfz 11452   ^cexp 11880    _C cbc 12093   sum_csu 13178   BernPoly cbp 28204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-sup 7706  df-oi 7739  df-card 8124  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-n0 10595  df-z 10662  df-uz 10877  df-rp 11007  df-fz 11453  df-fzo 11564  df-seq 11822  df-exp 11881  df-fac 12067  df-bc 12094  df-hash 12119  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-clim 12981  df-sum 13179  df-pred 27640  df-wrecs 27732  df-bpoly 28205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator