MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolylem Structured version   Visualization version   Unicode version

Theorem bpolylem 14178
Description: Lemma for bpolyval 14179. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
bpoly.1  |-  G  =  ( g  e.  _V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
bpoly.2  |-  F  = wrecs (  <  ,  NN0 ,  G )
Assertion
Ref Expression
bpolylem  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
Distinct variable groups:    g, k, n, F    g, N, k, n    g, X, k, n
Allowed substitution hints:    G( g, k, n)

Proof of Theorem bpolylem
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6315 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
x ^ n )  =  ( X ^
n ) )
21oveq1d 6323 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( x ^ n
)  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `
 k )  / 
( ( n  -  k )  +  1 ) ) ) )  =  ( ( X ^ n )  -  sum_ k  e.  dom  g
( ( n  _C  k )  x.  (
( g `  k
)  /  ( ( n  -  k )  +  1 ) ) ) ) )
32csbeq2dv 3785 . . . . . . . . 9  |-  ( x  =  X  ->  [_ ( # `
 dom  g )  /  n ]_ ( ( x ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  = 
[_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
43mpteq2dv 4483 . . . . . . . 8  |-  ( x  =  X  ->  (
g  e.  _V  |->  [_ ( # `  dom  g
)  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )  =  ( g  e.  _V  |->  [_ ( # `  dom  g
)  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) )
5 bpoly.1 . . . . . . . 8  |-  G  =  ( g  e.  _V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
64, 5syl6eqr 2523 . . . . . . 7  |-  ( x  =  X  ->  (
g  e.  _V  |->  [_ ( # `  dom  g
)  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )  =  G )
7 wrecseq3 7051 . . . . . . 7  |-  ( ( g  e.  _V  |->  [_ ( # `  dom  g
)  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )  =  G  -> wrecs (  <  ,  NN0 ,  ( g  e.  _V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) )  = wrecs (  <  ,  NN0 ,  G ) )
86, 7syl 17 . . . . . 6  |-  ( x  =  X  -> wrecs (  <  ,  NN0 ,  ( g  e.  _V  |->  [_ ( # `
 dom  g )  /  n ]_ ( ( x ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) ) )  = wrecs (  <  ,  NN0 ,  G ) )
9 bpoly.2 . . . . . 6  |-  F  = wrecs (  <  ,  NN0 ,  G )
108, 9syl6eqr 2523 . . . . 5  |-  ( x  =  X  -> wrecs (  <  ,  NN0 ,  ( g  e.  _V  |->  [_ ( # `
 dom  g )  /  n ]_ ( ( x ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) ) )  =  F )
1110fveq1d 5881 . . . 4  |-  ( x  =  X  ->  (wrecs (  <  ,  NN0 , 
( g  e.  _V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) ) `  m )  =  ( F `  m ) )
12 fveq2 5879 . . . 4  |-  ( m  =  N  ->  ( F `  m )  =  ( F `  N ) )
1311, 12sylan9eqr 2527 . . 3  |-  ( ( m  =  N  /\  x  =  X )  ->  (wrecs (  <  ,  NN0 ,  ( g  e. 
_V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) ) `  m )  =  ( F `  N ) )
14 df-bpoly 14177 . . 3  |- BernPoly  =  ( m  e.  NN0 ,  x  e.  CC  |->  (wrecs (  <  ,  NN0 ,  ( g  e.  _V  |->  [_ ( # `  dom  g
)  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) ) `  m ) )
15 fvex 5889 . . 3  |-  ( F `
 N )  e. 
_V
1613, 14, 15ovmpt2a 6446 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( F `  N ) )
17 ltweuz 12213 . . . . 5  |-  <  We  ( ZZ>= `  0 )
18 nn0uz 11217 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
19 weeq2 4828 . . . . . 6  |-  ( NN0  =  ( ZZ>= `  0
)  ->  (  <  We 
NN0 
<->  <  We  ( ZZ>= ` 
0 ) ) )
2018, 19ax-mp 5 . . . . 5  |-  (  < 
We  NN0  <->  <  We  ( ZZ>= ` 
0 ) )
2117, 20mpbir 214 . . . 4  |-  <  We  NN0
22 nn0ex 10899 . . . . 5  |-  NN0  e.  _V
23 exse 4803 . . . . 5  |-  ( NN0 
e.  _V  ->  < Se  NN0 )
2422, 23ax-mp 5 . . . 4  |-  < Se  NN0
2521, 24, 9wfr2 7073 . . 3  |-  ( N  e.  NN0  ->  ( F `
 N )  =  ( G `  ( F  |`  Pred (  <  ,  NN0 ,  N ) ) ) )
2625adantr 472 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( F `  N
)  =  ( G `
 ( F  |`  Pred (  <  ,  NN0 ,  N ) ) ) )
27 prednn0 11940 . . . . . 6  |-  ( N  e.  NN0  ->  Pred (  <  ,  NN0 ,  N
)  =  ( 0 ... ( N  - 
1 ) ) )
2827adantr 472 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  Pred (  <  ,  NN0 ,  N )  =  ( 0 ... ( N  -  1 ) ) )
2928reseq2d 5111 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( F  |`  Pred (  <  ,  NN0 ,  N
) )  =  ( F  |`  ( 0 ... ( N  - 
1 ) ) ) )
3029fveq2d 5883 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( G `  ( F  |`  Pred (  <  ,  NN0 ,  N ) ) )  =  ( G `
 ( F  |`  ( 0 ... ( N  -  1 ) ) ) ) )
3121, 24, 9wfrfun 7064 . . . . . 6  |-  Fun  F
32 ovex 6336 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  e. 
_V
33 resfunexg 6146 . . . . . 6  |-  ( ( Fun  F  /\  (
0 ... ( N  - 
1 ) )  e. 
_V )  ->  ( F  |`  ( 0 ... ( N  -  1 ) ) )  e. 
_V )
3431, 32, 33mp2an 686 . . . . 5  |-  ( F  |`  ( 0 ... ( N  -  1 ) ) )  e.  _V
35 dmeq 5040 . . . . . . . . . . 11  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  dom  g  =  dom  ( F  |`  ( 0 ... ( N  -  1 ) ) ) )
3621, 24, 9wfr1 7072 . . . . . . . . . . . . 13  |-  F  Fn  NN0
37 elfznn0 11913 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
3837ssriv 3422 . . . . . . . . . . . . 13  |-  ( 0 ... ( N  - 
1 ) )  C_  NN0
39 fnssres 5699 . . . . . . . . . . . . 13  |-  ( ( F  Fn  NN0  /\  ( 0 ... ( N  -  1 ) )  C_  NN0 )  -> 
( F  |`  (
0 ... ( N  - 
1 ) ) )  Fn  ( 0 ... ( N  -  1 ) ) )
4036, 38, 39mp2an 686 . . . . . . . . . . . 12  |-  ( F  |`  ( 0 ... ( N  -  1 ) ) )  Fn  (
0 ... ( N  - 
1 ) )
41 fndm 5685 . . . . . . . . . . . 12  |-  ( ( F  |`  ( 0 ... ( N  - 
1 ) ) )  Fn  ( 0 ... ( N  -  1 ) )  ->  dom  ( F  |`  ( 0 ... ( N  - 
1 ) ) )  =  ( 0 ... ( N  -  1 ) ) )
4240, 41ax-mp 5 . . . . . . . . . . 11  |-  dom  ( F  |`  ( 0 ... ( N  -  1 ) ) )  =  ( 0 ... ( N  -  1 ) )
4335, 42syl6eq 2521 . . . . . . . . . 10  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  dom  g  =  ( 0 ... ( N  - 
1 ) ) )
44 fveq1 5878 . . . . . . . . . . . . 13  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  (
g `  k )  =  ( ( F  |`  ( 0 ... ( N  -  1 ) ) ) `  k
) )
45 fvres 5893 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  (
( F  |`  (
0 ... ( N  - 
1 ) ) ) `
 k )  =  ( F `  k
) )
4644, 45sylan9eq 2525 . . . . . . . . . . . 12  |-  ( ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
g `  k )  =  ( F `  k ) )
4746oveq1d 6323 . . . . . . . . . . 11  |-  ( ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( g `  k
)  /  ( ( n  -  k )  +  1 ) )  =  ( ( F `
 k )  / 
( ( n  -  k )  +  1 ) ) )
4847oveq2d 6324 . . . . . . . . . 10  |-  ( ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) )  =  ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
4943, 48sumeq12rdv 13850 . . . . . . . . 9  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `
 k )  / 
( ( n  -  k )  +  1 ) ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  (
( F `  k
)  /  ( ( n  -  k )  +  1 ) ) ) )
5049oveq2d 6324 . . . . . . . 8  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  (
( X ^ n
)  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `
 k )  / 
( ( n  -  k )  +  1 ) ) ) )  =  ( ( X ^ n )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( n  _C  k
)  x.  ( ( F `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
5150csbeq2dv 3785 . . . . . . 7  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  [_ ( # `
 dom  g )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  = 
[_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( n  _C  k
)  x.  ( ( F `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
5243fveq2d 5883 . . . . . . . 8  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  ( # `
 dom  g )  =  ( # `  (
0 ... ( N  - 
1 ) ) ) )
5352csbeq1d 3356 . . . . . . 7  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  [_ ( # `
 dom  g )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  (
( F `  k
)  /  ( ( n  -  k )  +  1 ) ) ) )  =  [_ ( # `  ( 0 ... ( N  - 
1 ) ) )  /  n ]_ (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
5451, 53eqtrd 2505 . . . . . 6  |-  ( g  =  ( F  |`  ( 0 ... ( N  -  1 ) ) )  ->  [_ ( # `
 dom  g )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  = 
[_ ( # `  (
0 ... ( N  - 
1 ) ) )  /  n ]_ (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
55 ovex 6336 . . . . . . 7  |-  ( ( X ^ n )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  (
( F `  k
)  /  ( ( n  -  k )  +  1 ) ) ) )  e.  _V
5655csbex 4531 . . . . . 6  |-  [_ ( # `
 ( 0 ... ( N  -  1 ) ) )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( n  _C  k
)  x.  ( ( F `  k )  /  ( ( n  -  k )  +  1 ) ) ) )  e.  _V
5754, 5, 56fvmpt 5963 . . . . 5  |-  ( ( F  |`  ( 0 ... ( N  - 
1 ) ) )  e.  _V  ->  ( G `  ( F  |`  ( 0 ... ( N  -  1 ) ) ) )  = 
[_ ( # `  (
0 ... ( N  - 
1 ) ) )  /  n ]_ (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
5834, 57ax-mp 5 . . . 4  |-  ( G `
 ( F  |`  ( 0 ... ( N  -  1 ) ) ) )  = 
[_ ( # `  (
0 ... ( N  - 
1 ) ) )  /  n ]_ (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
59 nfcvd 2613 . . . . . . 7  |-  ( N  e.  NN0  ->  F/_ n
( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( F `  k )  /  ( ( N  -  k )  +  1 ) ) ) ) )
60 oveq2 6316 . . . . . . . 8  |-  ( n  =  N  ->  ( X ^ n )  =  ( X ^ N
) )
61 oveq1 6315 . . . . . . . . . 10  |-  ( n  =  N  ->  (
n  _C  k )  =  ( N  _C  k ) )
62 oveq1 6315 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (
n  -  k )  =  ( N  -  k ) )
6362oveq1d 6323 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
( n  -  k
)  +  1 )  =  ( ( N  -  k )  +  1 ) )
6463oveq2d 6324 . . . . . . . . . 10  |-  ( n  =  N  ->  (
( F `  k
)  /  ( ( n  -  k )  +  1 ) )  =  ( ( F `
 k )  / 
( ( N  -  k )  +  1 ) ) )
6561, 64oveq12d 6326 . . . . . . . . 9  |-  ( n  =  N  ->  (
( n  _C  k
)  x.  ( ( F `  k )  /  ( ( n  -  k )  +  1 ) ) )  =  ( ( N  _C  k )  x.  ( ( F `  k )  /  (
( N  -  k
)  +  1 ) ) ) )
6665sumeq2sdv 13847 . . . . . . . 8  |-  ( n  =  N  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( F `  k )  /  ( ( N  -  k )  +  1 ) ) ) )
6760, 66oveq12d 6326 . . . . . . 7  |-  ( n  =  N  ->  (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( F `  k )  /  ( ( N  -  k )  +  1 ) ) ) ) )
6859, 67csbiegf 3373 . . . . . 6  |-  ( N  e.  NN0  ->  [_ N  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  (
( F `  k
)  /  ( ( n  -  k )  +  1 ) ) ) )  =  ( ( X ^ N
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( F `  k )  /  (
( N  -  k
)  +  1 ) ) ) ) )
6968adantr 472 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  [_ N  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( n  _C  k
)  x.  ( ( F `  k )  /  ( ( n  -  k )  +  1 ) ) ) )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( F `  k
)  /  ( ( N  -  k )  +  1 ) ) ) ) )
70 nn0z 10984 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  ZZ )
71 fz01en 11853 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0 ... ( N  - 
1 ) )  ~~  ( 1 ... N
) )
7270, 71syl 17 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( 0 ... ( N  - 
1 ) )  ~~  ( 1 ... N
) )
73 fzfi 12223 . . . . . . . . . 10  |-  ( 0 ... ( N  - 
1 ) )  e. 
Fin
74 fzfi 12223 . . . . . . . . . 10  |-  ( 1 ... N )  e. 
Fin
75 hashen 12568 . . . . . . . . . 10  |-  ( ( ( 0 ... ( N  -  1 ) )  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( # `  (
0 ... ( N  - 
1 ) ) )  =  ( # `  (
1 ... N ) )  <-> 
( 0 ... ( N  -  1 ) )  ~~  ( 1 ... N ) ) )
7673, 74, 75mp2an 686 . . . . . . . . 9  |-  ( (
# `  ( 0 ... ( N  -  1 ) ) )  =  ( # `  (
1 ... N ) )  <-> 
( 0 ... ( N  -  1 ) )  ~~  ( 1 ... N ) )
7772, 76sylibr 217 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 0 ... ( N  -  1 ) ) )  =  (
# `  ( 1 ... N ) ) )
78 hashfz1 12567 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
7977, 78eqtrd 2505 . . . . . . 7  |-  ( N  e.  NN0  ->  ( # `  ( 0 ... ( N  -  1 ) ) )  =  N )
8079adantr 472 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( # `  (
0 ... ( N  - 
1 ) ) )  =  N )
8180csbeq1d 3356 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  [_ ( # `  (
0 ... ( N  - 
1 ) ) )  /  n ]_ (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  = 
[_ N  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( n  _C  k
)  x.  ( ( F `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
82 simpr 468 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  X  e.  CC )
83 fveq2 5879 . . . . . . . . . . . 12  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
8411, 83sylan9eqr 2527 . . . . . . . . . . 11  |-  ( ( m  =  k  /\  x  =  X )  ->  (wrecs (  <  ,  NN0 ,  ( g  e. 
_V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) ) `  m )  =  ( F `  k ) )
85 fvex 5889 . . . . . . . . . . 11  |-  ( F `
 k )  e. 
_V
8684, 14, 85ovmpt2a 6446 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  =  ( F `  k ) )
8737, 82, 86syl2anr 486 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( k BernPoly  X )  =  ( F `
 k ) )
8887oveq1d 6323 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( (
k BernPoly  X )  /  (
( N  -  k
)  +  1 ) )  =  ( ( F `  k )  /  ( ( N  -  k )  +  1 ) ) )
8988oveq2d 6324 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  =  ( ( N  _C  k )  x.  ( ( F `
 k )  / 
( ( N  -  k )  +  1 ) ) ) )
9089sumeq2dv 13846 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( F `  k
)  /  ( ( N  -  k )  +  1 ) ) ) )
9190oveq2d 6324 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( F `  k )  /  ( ( N  -  k )  +  1 ) ) ) ) )
9269, 81, 913eqtr4d 2515 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  [_ ( # `  (
0 ... ( N  - 
1 ) ) )  /  n ]_ (
( X ^ n
)  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( n  _C  k )  x.  ( ( F `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
9358, 92syl5eq 2517 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( G `  ( F  |`  ( 0 ... ( N  -  1 ) ) ) )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
9430, 93eqtrd 2505 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( G `  ( F  |`  Pred (  <  ,  NN0 ,  N ) ) )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) ) ) )
9516, 26, 943eqtrd 2509 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031   [_csb 3349    C_ wss 3390   class class class wbr 4395    |-> cmpt 4454   Se wse 4796    We wwe 4797   dom cdm 4839    |` cres 4841   Predcpred 5386   Fun wfun 5583    Fn wfn 5584   ` cfv 5589  (class class class)co 6308  wrecscwrecs 7045    ~~ cen 7584   Fincfn 7587   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    - cmin 9880    / cdiv 10291   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   ^cexp 12310    _C cbc 12525   #chash 12553   sum_csu 13829   BernPoly cbp 14176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-seq 12252  df-hash 12554  df-sum 13830  df-bpoly 14177
This theorem is referenced by:  bpolyval  14179
  Copyright terms: Public domain W3C validator