Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolycl Structured version   Unicode version

Theorem bpolycl 29741
Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolycl  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  e.  CC )

Proof of Theorem bpolycl
Dummy variables  n  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6302 . . . . 5  |-  ( n  =  k  ->  (
n BernPoly  X )  =  ( k BernPoly  X ) )
21eleq1d 2536 . . . 4  |-  ( n  =  k  ->  (
( n BernPoly  X )  e.  CC  <->  ( k BernPoly  X
)  e.  CC ) )
32imbi2d 316 . . 3  |-  ( n  =  k  ->  (
( X  e.  CC  ->  ( n BernPoly  X )  e.  CC )  <->  ( X  e.  CC  ->  ( k BernPoly  X )  e.  CC ) ) )
4 oveq1 6302 . . . . 5  |-  ( n  =  N  ->  (
n BernPoly  X )  =  ( N BernPoly  X ) )
54eleq1d 2536 . . . 4  |-  ( n  =  N  ->  (
( n BernPoly  X )  e.  CC  <->  ( N BernPoly  X )  e.  CC ) )
65imbi2d 316 . . 3  |-  ( n  =  N  ->  (
( X  e.  CC  ->  ( n BernPoly  X )  e.  CC )  <->  ( X  e.  CC  ->  ( N BernPoly  X )  e.  CC ) ) )
7 r19.21v 2872 . . . 4  |-  ( A. k  e.  ( 0 ... ( n  - 
1 ) ) ( X  e.  CC  ->  ( k BernPoly  X )  e.  CC ) 
<->  ( X  e.  CC  ->  A. k  e.  ( 0 ... ( n  -  1 ) ) ( k BernPoly  X )  e.  CC ) )
8 bpolyval 29738 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  X  e.  CC )  ->  ( n BernPoly  X )  =  ( ( X ^ n )  -  sum_ m  e.  ( 0 ... ( n  - 
1 ) ) ( ( n  _C  m
)  x.  ( ( m BernPoly  X )  /  (
( n  -  m
)  +  1 ) ) ) ) )
983adant3 1016 . . . . . . 7  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( n BernPoly  X
)  =  ( ( X ^ n )  -  sum_ m  e.  ( 0 ... ( n  -  1 ) ) ( ( n  _C  m )  x.  (
( m BernPoly  X )  /  ( ( n  -  m )  +  1 ) ) ) ) )
10 simp2 997 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  X  e.  CC )
11 simp1 996 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  n  e.  NN0 )
1210, 11expcld 12290 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( X ^
n )  e.  CC )
13 fzfid 12063 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( 0 ... ( n  -  1 ) )  e.  Fin )
14 elfzelz 11700 . . . . . . . . . . . 12  |-  ( m  e.  ( 0 ... ( n  -  1 ) )  ->  m  e.  ZZ )
15 bccl 12380 . . . . . . . . . . . 12  |-  ( ( n  e.  NN0  /\  m  e.  ZZ )  ->  ( n  _C  m
)  e.  NN0 )
1611, 14, 15syl2an 477 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( n  _C  m )  e.  NN0 )
1716nn0cnd 10866 . . . . . . . . . 10  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( n  _C  m )  e.  CC )
18 oveq1 6302 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
k BernPoly  X )  =  ( m BernPoly  X ) )
1918eleq1d 2536 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( k BernPoly  X )  e.  CC  <->  ( m BernPoly  X
)  e.  CC ) )
2019rspccva 3218 . . . . . . . . . . . 12  |-  ( ( A. k  e.  ( 0 ... ( n  -  1 ) ) ( k BernPoly  X )  e.  CC  /\  m  e.  ( 0 ... (
n  -  1 ) ) )  ->  (
m BernPoly  X )  e.  CC )
21203ad2antl3 1160 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( m BernPoly  X )  e.  CC )
22 fzssp1 11738 . . . . . . . . . . . . . . 15  |-  ( 0 ... ( n  - 
1 ) )  C_  ( 0 ... (
( n  -  1 )  +  1 ) )
2311nn0cnd 10866 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  n  e.  CC )
24 ax-1cn 9562 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
25 npcan 9841 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
2623, 24, 25sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( ( n  -  1 )  +  1 )  =  n )
2726oveq2d 6311 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( 0 ... ( ( n  - 
1 )  +  1 ) )  =  ( 0 ... n ) )
2822, 27syl5sseq 3557 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( 0 ... ( n  -  1 ) )  C_  (
0 ... n ) )
2928sselda 3509 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  m  e.  ( 0 ... n
) )
30 fznn0sub 11728 . . . . . . . . . . . . 13  |-  ( m  e.  ( 0 ... n )  ->  (
n  -  m )  e.  NN0 )
31 nn0p1nn 10847 . . . . . . . . . . . . 13  |-  ( ( n  -  m )  e.  NN0  ->  ( ( n  -  m )  +  1 )  e.  NN )
3229, 30, 313syl 20 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( (
n  -  m )  +  1 )  e.  NN )
3332nncnd 10564 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( (
n  -  m )  +  1 )  e.  CC )
3432nnne0d 10592 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( (
n  -  m )  +  1 )  =/=  0 )
3521, 33, 34divcld 10332 . . . . . . . . . 10  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( (
m BernPoly  X )  /  (
( n  -  m
)  +  1 ) )  e.  CC )
3617, 35mulcld 9628 . . . . . . . . 9  |-  ( ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  /\  m  e.  ( 0 ... ( n  -  1 ) ) )  ->  ( (
n  _C  m )  x.  ( ( m BernPoly  X )  /  (
( n  -  m
)  +  1 ) ) )  e.  CC )
3713, 36fsumcl 13535 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  sum_ m  e.  ( 0 ... ( n  -  1 ) ) ( ( n  _C  m )  x.  (
( m BernPoly  X )  /  ( ( n  -  m )  +  1 ) ) )  e.  CC )
3812, 37subcld 9942 . . . . . . 7  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( ( X ^ n )  -  sum_ m  e.  ( 0 ... ( n  - 
1 ) ) ( ( n  _C  m
)  x.  ( ( m BernPoly  X )  /  (
( n  -  m
)  +  1 ) ) ) )  e.  CC )
399, 38eqeltrd 2555 . . . . . 6  |-  ( ( n  e.  NN0  /\  X  e.  CC  /\  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( n BernPoly  X
)  e.  CC )
40393exp 1195 . . . . 5  |-  ( n  e.  NN0  ->  ( X  e.  CC  ->  ( A. k  e.  (
0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC  ->  ( n BernPoly  X )  e.  CC ) ) )
4140a2d 26 . . . 4  |-  ( n  e.  NN0  ->  ( ( X  e.  CC  ->  A. k  e.  ( 0 ... ( n  - 
1 ) ) ( k BernPoly  X )  e.  CC )  ->  ( X  e.  CC  ->  ( n BernPoly  X )  e.  CC ) ) )
427, 41syl5bi 217 . . 3  |-  ( n  e.  NN0  ->  ( A. k  e.  ( 0 ... ( n  - 
1 ) ) ( X  e.  CC  ->  ( k BernPoly  X )  e.  CC )  ->  ( X  e.  CC  ->  ( n BernPoly  X )  e.  CC ) ) )
433, 6, 42nn0sinds 29225 . 2  |-  ( N  e.  NN0  ->  ( X  e.  CC  ->  ( N BernPoly  X )  e.  CC ) )
4443imp 429 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817  (class class class)co 6295   CCcc 9502   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    - cmin 9817    / cdiv 10218   NNcn 10548   NN0cn0 10807   ZZcz 10876   ...cfz 11684   ^cexp 12146    _C cbc 12360   sum_csu 13488   BernPoly cbp 29735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-sum 13489  df-pred 29171  df-wrecs 29263  df-bpoly 29736
This theorem is referenced by:  bpolysum  29742  bpolydiflem  29743  fsumkthpow  29745  bpoly3  29747  bpoly4  29748
  Copyright terms: Public domain W3C validator