MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly4 Structured version   Visualization version   Unicode version

Theorem bpoly4 14189
Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly4  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )

Proof of Theorem bpoly4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 4nn0 10912 . . 3  |-  4  e.  NN0
2 bpolyval 14179 . . 3  |-  ( ( 4  e.  NN0  /\  X  e.  CC )  ->  ( 4 BernPoly  X )  =  ( ( X ^ 4 )  -  sum_ k  e.  ( 0 ... ( 4  -  1 ) ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) ) ) )
31, 2mpan 684 . 2  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( X ^ 4 )  -  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) ) ) )
4 4cn 10709 . . . . . . . 8  |-  4  e.  CC
5 ax-1cn 9615 . . . . . . . 8  |-  1  e.  CC
6 3cn 10706 . . . . . . . 8  |-  3  e.  CC
7 3p1e4 10758 . . . . . . . . 9  |-  ( 3  +  1 )  =  4
86, 5, 7addcomli 9843 . . . . . . . 8  |-  ( 1  +  3 )  =  4
94, 5, 6, 8subaddrii 9983 . . . . . . 7  |-  ( 4  -  1 )  =  3
10 df-3 10691 . . . . . . 7  |-  3  =  ( 2  +  1 )
119, 10eqtri 2493 . . . . . 6  |-  ( 4  -  1 )  =  ( 2  +  1 )
1211oveq2i 6319 . . . . 5  |-  ( 0 ... ( 4  -  1 ) )  =  ( 0 ... (
2  +  1 ) )
1312sumeq1i 13841 . . . 4  |-  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
14 2eluzge0 11227 . . . . . . 7  |-  2  e.  ( ZZ>= `  0 )
1514a1i 11 . . . . . 6  |-  ( X  e.  CC  ->  2  e.  ( ZZ>= `  0 )
)
16 elfzelz 11826 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  ZZ )
17 bccl 12545 . . . . . . . . . 10  |-  ( ( 4  e.  NN0  /\  k  e.  ZZ )  ->  ( 4  _C  k
)  e.  NN0 )
181, 16, 17sylancr 676 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  _C  k )  e.  NN0 )
1918nn0cnd 10951 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  _C  k )  e.  CC )
2019adantl 473 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( 4  _C  k )  e.  CC )
21 elfznn0 11913 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  NN0 )
22 bpolycl 14182 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
2321, 22sylan 479 . . . . . . . . 9  |-  ( ( k  e.  ( 0 ... ( 2  +  1 ) )  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
2423ancoms 460 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( k BernPoly  X
)  e.  CC )
25 4re 10708 . . . . . . . . . . . . 13  |-  4  e.  RR
2625a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  4  e.  RR )
2716zred 11063 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  RR )
2826, 27resubcld 10068 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  -  k )  e.  RR )
29 peano2re 9824 . . . . . . . . . . 11  |-  ( ( 4  -  k )  e.  RR  ->  (
( 4  -  k
)  +  1 )  e.  RR )
3028, 29syl 17 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  e.  RR )
3130recnd 9687 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  e.  CC )
3231adantl 473 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  -  k )  +  1 )  e.  CC )
33 1red 9676 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  1  e.  RR )
3410oveq2i 6319 . . . . . . . . . . . . . 14  |-  ( 0 ... 3 )  =  ( 0 ... (
2  +  1 ) )
3534eleq2i 2541 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  <->  k  e.  ( 0 ... (
2  +  1 ) ) )
36 elfzelz 11826 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
3736zred 11063 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  RR )
38 3re 10705 . . . . . . . . . . . . . . 15  |-  3  e.  RR
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  3  e.  RR )
4025a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  4  e.  RR )
41 elfzle2 11829 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  k  <_  3 )
42 3lt4 10802 . . . . . . . . . . . . . . 15  |-  3  <  4
4342a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  3  <  4 )
4437, 39, 40, 41, 43lelttrd 9810 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  ->  k  <  4 )
4535, 44sylbir 218 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  <  4 )
4627, 26posdifd 10221 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
k  <  4  <->  0  <  ( 4  -  k ) ) )
4745, 46mpbid 215 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  ( 4  -  k
) )
48 0lt1 10157 . . . . . . . . . . . 12  |-  0  <  1
4948a1i 11 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  1 )
5028, 33, 47, 49addgt0d 10209 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  ( ( 4  -  k )  +  1 ) )
5150gt0ne0d 10199 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  =/=  0 )
5251adantl 473 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  -  k )  +  1 )  =/=  0
)
5324, 32, 52divcld 10405 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) )  e.  CC )
5420, 53mulcld 9681 . . . . . 6  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
5510eqeq2i 2483 . . . . . . 7  |-  ( k  =  3  <->  k  =  ( 2  +  1 ) )
56 oveq2 6316 . . . . . . . . 9  |-  ( k  =  3  ->  (
4  _C  k )  =  ( 4  _C  3 ) )
57 4bc3eq4 12551 . . . . . . . . 9  |-  ( 4  _C  3 )  =  4
5856, 57syl6eq 2521 . . . . . . . 8  |-  ( k  =  3  ->  (
4  _C  k )  =  4 )
59 oveq1 6315 . . . . . . . . 9  |-  ( k  =  3  ->  (
k BernPoly  X )  =  ( 3 BernPoly  X ) )
60 oveq2 6316 . . . . . . . . . . 11  |-  ( k  =  3  ->  (
4  -  k )  =  ( 4  -  3 ) )
6160oveq1d 6323 . . . . . . . . . 10  |-  ( k  =  3  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  3 )  +  1 ) )
624, 6, 5, 7subaddrii 9983 . . . . . . . . . . . 12  |-  ( 4  -  3 )  =  1
6362oveq1i 6318 . . . . . . . . . . 11  |-  ( ( 4  -  3 )  +  1 )  =  ( 1  +  1 )
64 df-2 10690 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
6563, 64eqtr4i 2496 . . . . . . . . . 10  |-  ( ( 4  -  3 )  +  1 )  =  2
6661, 65syl6eq 2521 . . . . . . . . 9  |-  ( k  =  3  ->  (
( 4  -  k
)  +  1 )  =  2 )
6759, 66oveq12d 6326 . . . . . . . 8  |-  ( k  =  3  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 3 BernPoly  X
)  /  2 ) )
6858, 67oveq12d 6326 . . . . . . 7  |-  ( k  =  3  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )
6955, 68sylbir 218 . . . . . 6  |-  ( k  =  ( 2  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )
7015, 54, 69fsump1 13894 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 2 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) ) )
7164oveq2i 6319 . . . . . . . 8  |-  ( 0 ... 2 )  =  ( 0 ... (
1  +  1 ) )
7271sumeq1i 13841 . . . . . . 7  |-  sum_ k  e.  ( 0 ... 2
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
73 1eluzge0 11226 . . . . . . . . . 10  |-  1  e.  ( ZZ>= `  0 )
7473a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  1  e.  ( ZZ>= `  0 )
)
75 fzssp1 11867 . . . . . . . . . . . 12  |-  ( 0 ... ( 1  +  1 ) )  C_  ( 0 ... (
( 1  +  1 )  +  1 ) )
7664oveq1i 6318 . . . . . . . . . . . . 13  |-  ( 2  +  1 )  =  ( ( 1  +  1 )  +  1 )
7776oveq2i 6319 . . . . . . . . . . . 12  |-  ( 0 ... ( 2  +  1 ) )  =  ( 0 ... (
( 1  +  1 )  +  1 ) )
7875, 77sseqtr4i 3451 . . . . . . . . . . 11  |-  ( 0 ... ( 1  +  1 ) )  C_  ( 0 ... (
2  +  1 ) )
7978sseli 3414 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 1  +  1 ) )  ->  k  e.  ( 0 ... (
2  +  1 ) ) )
8079, 54sylan2 482 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 1  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
8164eqeq2i 2483 . . . . . . . . . 10  |-  ( k  =  2  <->  k  =  ( 1  +  1 ) )
82 oveq2 6316 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
4  _C  k )  =  ( 4  _C  2 ) )
83 4bc2eq6 12552 . . . . . . . . . . . 12  |-  ( 4  _C  2 )  =  6
8482, 83syl6eq 2521 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
4  _C  k )  =  6 )
85 oveq1 6315 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
k BernPoly  X )  =  ( 2 BernPoly  X ) )
86 oveq2 6316 . . . . . . . . . . . . . 14  |-  ( k  =  2  ->  (
4  -  k )  =  ( 4  -  2 ) )
8786oveq1d 6323 . . . . . . . . . . . . 13  |-  ( k  =  2  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  2 )  +  1 ) )
88 2cn 10702 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
89 2p2e4 10750 . . . . . . . . . . . . . . . 16  |-  ( 2  +  2 )  =  4
904, 88, 88, 89subaddrii 9983 . . . . . . . . . . . . . . 15  |-  ( 4  -  2 )  =  2
9190oveq1i 6318 . . . . . . . . . . . . . 14  |-  ( ( 4  -  2 )  +  1 )  =  ( 2  +  1 )
9291, 10eqtr4i 2496 . . . . . . . . . . . . 13  |-  ( ( 4  -  2 )  +  1 )  =  3
9387, 92syl6eq 2521 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
( 4  -  k
)  +  1 )  =  3 )
9485, 93oveq12d 6326 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 2 BernPoly  X
)  /  3 ) )
9584, 94oveq12d 6326 . . . . . . . . . 10  |-  ( k  =  2  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )
9681, 95sylbir 218 . . . . . . . . 9  |-  ( k  =  ( 1  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )
9774, 80, 96fsump1 13894 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 1 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) ) )
98 0p1e1 10743 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
9998oveq2i 6319 . . . . . . . . . . 11  |-  ( 0 ... ( 0  +  1 ) )  =  ( 0 ... 1
)
10099sumeq1i 13841 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... 1
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
101 0nn0 10908 . . . . . . . . . . . . . 14  |-  0  e.  NN0
102 nn0uz 11217 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
103101, 102eleqtri 2547 . . . . . . . . . . . . 13  |-  0  e.  ( ZZ>= `  0 )
104103a1i 11 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
105 3nn 10791 . . . . . . . . . . . . . . . . 17  |-  3  e.  NN
106 nnuz 11218 . . . . . . . . . . . . . . . . 17  |-  NN  =  ( ZZ>= `  1 )
107105, 106eleqtri 2547 . . . . . . . . . . . . . . . 16  |-  3  e.  ( ZZ>= `  1 )
108 fzss2 11864 . . . . . . . . . . . . . . . 16  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( 0 ... 1 )  C_  ( 0 ... 3
) )
109107, 108ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 ... 1 )  C_  ( 0 ... 3
)
110 2p1e3 10756 . . . . . . . . . . . . . . . 16  |-  ( 2  +  1 )  =  3
111110oveq2i 6319 . . . . . . . . . . . . . . 15  |-  ( 0 ... ( 2  +  1 ) )  =  ( 0 ... 3
)
112109, 99, 1113sstr4i 3457 . . . . . . . . . . . . . 14  |-  ( 0 ... ( 0  +  1 ) )  C_  ( 0 ... (
2  +  1 ) )
113112sseli 3414 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  ->  k  e.  ( 0 ... (
2  +  1 ) ) )
114113, 54sylan2 482 . . . . . . . . . . . 12  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
11598eqeq2i 2483 . . . . . . . . . . . . 13  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
116 oveq2 6316 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
4  _C  k )  =  ( 4  _C  1 ) )
117 bcn1 12536 . . . . . . . . . . . . . . . 16  |-  ( 4  e.  NN0  ->  ( 4  _C  1 )  =  4 )
1181, 117ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 4  _C  1 )  =  4
119116, 118syl6eq 2521 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
4  _C  k )  =  4 )
120 oveq1 6315 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
121 oveq2 6316 . . . . . . . . . . . . . . . . 17  |-  ( k  =  1  ->  (
4  -  k )  =  ( 4  -  1 ) )
122121oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  1 )  +  1 ) )
1239oveq1i 6318 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  -  1 )  +  1 )  =  ( 3  +  1 )
124 df-4 10692 . . . . . . . . . . . . . . . . 17  |-  4  =  ( 3  +  1 )
125123, 124eqtr4i 2496 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  1 )  +  1 )  =  4
126122, 125syl6eq 2521 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
( 4  -  k
)  +  1 )  =  4 )
127120, 126oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  4 ) )
128119, 127oveq12d 6326 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )
129115, 128sylbi 200 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )
130104, 114, 129fsump1 13894 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) ) )
131 0z 10972 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
1325a1i 11 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  1  e.  CC )
133 bpolycl 14182 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  NN0  /\  X  e.  CC )  ->  ( 0 BernPoly  X )  e.  CC )
134101, 133mpan 684 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  e.  CC )
135 5cn 10711 . . . . . . . . . . . . . . . . 17  |-  5  e.  CC
136135a1i 11 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  5  e.  CC )
137 0re 9661 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
138 5pos 10729 . . . . . . . . . . . . . . . . . 18  |-  0  <  5
139137, 138gtneii 9764 . . . . . . . . . . . . . . . . 17  |-  5  =/=  0
140139a1i 11 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  5  =/=  0 )
141134, 136, 140divcld 10405 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  5 )  e.  CC )
142132, 141mulcld 9681 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  e.  CC )
143 oveq2 6316 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
4  _C  k )  =  ( 4  _C  0 ) )
144 bcn0 12533 . . . . . . . . . . . . . . . . . 18  |-  ( 4  e.  NN0  ->  ( 4  _C  0 )  =  1 )
1451, 144ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 4  _C  0 )  =  1
146143, 145syl6eq 2521 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
4  _C  k )  =  1 )
147 oveq1 6315 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
148 oveq2 6316 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
4  -  k )  =  ( 4  -  0 ) )
149148oveq1d 6323 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  0  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  0 )  +  1 ) )
1504subid1i 9966 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  -  0 )  =  4
151150oveq1i 6318 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 4  -  0 )  +  1 )  =  ( 4  +  1 )
152 4p1e5 10759 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  +  1 )  =  5
153151, 152eqtri 2493 . . . . . . . . . . . . . . . . . 18  |-  ( ( 4  -  0 )  +  1 )  =  5
154149, 153syl6eq 2521 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
( 4  -  k
)  +  1 )  =  5 )
155147, 154oveq12d 6326 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  5 ) )
156146, 155oveq12d 6326 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
157156fsum1 13885 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  5 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
158131, 142, 157sylancr 676 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
159 bpoly0 14180 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
160159oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  5 )  =  ( 1  /  5
) )
161160oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  =  ( 1  x.  ( 1  /  5 ) ) )
162135, 139reccli 10359 . . . . . . . . . . . . . . 15  |-  ( 1  /  5 )  e.  CC
163162mulid2i 9664 . . . . . . . . . . . . . 14  |-  ( 1  x.  ( 1  / 
5 ) )  =  ( 1  /  5
)
164161, 163syl6eq 2521 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  =  ( 1  /  5 ) )
165158, 164eqtrd 2505 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( 1  /  5 ) )
166 1nn0 10909 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
167 bpolycl 14182 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN0  /\  X  e.  CC )  ->  ( 1 BernPoly  X )  e.  CC )
168166, 167mpan 684 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  e.  CC )
169 nn0cn 10903 . . . . . . . . . . . . . . 15  |-  ( 4  e.  NN0  ->  4  e.  CC )
1701, 169mp1i 13 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  4  e.  CC )
171 4ne0 10728 . . . . . . . . . . . . . . 15  |-  4  =/=  0
172171a1i 11 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  4  =/=  0 )
173168, 170, 172divcan2d 10407 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
4  x.  ( ( 1 BernPoly  X )  /  4
) )  =  ( 1 BernPoly  X ) )
174 bpoly1 14181 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
175173, 174eqtrd 2505 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
4  x.  ( ( 1 BernPoly  X )  /  4
) )  =  ( X  -  ( 1  /  2 ) ) )
176165, 175oveq12d 6326 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )  =  ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) ) )
177130, 176eqtrd 2505 . . . . . . . . . 10  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) ) )
178100, 177syl5eqr 2519 . . . . . . . . 9  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 1
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) ) )
179 6cn 10713 . . . . . . . . . . . 12  |-  6  e.  CC
180179a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  6  e.  CC )
181 2nn0 10910 . . . . . . . . . . . 12  |-  2  e.  NN0
182 bpolycl 14182 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  e.  CC )
183181, 182mpan 684 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  e.  CC )
1846a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  3  e.  CC )
185 3ne0 10726 . . . . . . . . . . . 12  |-  3  =/=  0
186185a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  3  =/=  0 )
187180, 183, 184, 186div12d 10441 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
6  x.  ( ( 2 BernPoly  X )  /  3
) )  =  ( ( 2 BernPoly  X )  x.  ( 6  / 
3 ) ) )
188 3t2e6 10784 . . . . . . . . . . . . 13  |-  ( 3  x.  2 )  =  6
189179, 6, 88, 185divmuli 10383 . . . . . . . . . . . . 13  |-  ( ( 6  /  3 )  =  2  <->  ( 3  x.  2 )  =  6 )
190188, 189mpbir 214 . . . . . . . . . . . 12  |-  ( 6  /  3 )  =  2
191190oveq2i 6319 . . . . . . . . . . 11  |-  ( ( 2 BernPoly  X )  x.  (
6  /  3 ) )  =  ( ( 2 BernPoly  X )  x.  2 )
19288a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  2  e.  CC )
193183, 192mulcomd 9682 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  2 )  =  ( 2  x.  ( 2 BernPoly  X ) ) )
194 bpoly2 14187 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
195194oveq2d 6324 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( 2 BernPoly  X ) )  =  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )
196193, 195eqtrd 2505 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  2 )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
197191, 196syl5eq 2517 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  ( 6  /  3
) )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
198187, 197eqtrd 2505 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
6  x.  ( ( 2 BernPoly  X )  /  3
) )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
199178, 198oveq12d 6326 . . . . . . . 8  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) )
20097, 199eqtrd 2505 . . . . . . 7  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )
20172, 200syl5eq 2517 . . . . . 6  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 2
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )
202 3nn0 10911 . . . . . . . . 9  |-  3  e.  NN0
203 bpolycl 14182 . . . . . . . . 9  |-  ( ( 3  e.  NN0  /\  X  e.  CC )  ->  ( 3 BernPoly  X )  e.  CC )
204202, 203mpan 684 . . . . . . . 8  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  e.  CC )
205 2ne0 10724 . . . . . . . . 9  |-  2  =/=  0
206205a1i 11 . . . . . . . 8  |-  ( X  e.  CC  ->  2  =/=  0 )
207170, 204, 192, 206div12d 10441 . . . . . . 7  |-  ( X  e.  CC  ->  (
4  x.  ( ( 3 BernPoly  X )  /  2
) )  =  ( ( 3 BernPoly  X )  x.  ( 4  / 
2 ) ) )
208 4d2e2 10789 . . . . . . . . 9  |-  ( 4  /  2 )  =  2
209208oveq2i 6319 . . . . . . . 8  |-  ( ( 3 BernPoly  X )  x.  (
4  /  2 ) )  =  ( ( 3 BernPoly  X )  x.  2 )
210204, 192mulcomd 9682 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  2 )  =  ( 2  x.  ( 3 BernPoly  X ) ) )
211 bpoly3 14188 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  =  ( ( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )
212211oveq2d 6324 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
2  x.  ( 3 BernPoly  X ) )  =  ( 2  x.  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
213210, 212eqtrd 2505 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  2 )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
214209, 213syl5eq 2517 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  ( 4  /  2
) )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
215207, 214eqtrd 2505 . . . . . 6  |-  ( X  e.  CC  ->  (
4  x.  ( ( 3 BernPoly  X )  /  2
) )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
216201, 215oveq12d 6326 . . . . 5  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 2 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )  =  ( ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
21770, 216eqtrd 2505 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
21813, 217syl5eq 2517 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
219218oveq2d 6324 . 2  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) ) )  =  ( ( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) ) )
220 expcl 12328 . . . . 5  |-  ( ( X  e.  CC  /\  4  e.  NN0 )  -> 
( X ^ 4 )  e.  CC )
2211, 220mpan2 685 . . . 4  |-  ( X  e.  CC  ->  ( X ^ 4 )  e.  CC )
222 expcl 12328 . . . . . 6  |-  ( ( X  e.  CC  /\  3  e.  NN0 )  -> 
( X ^ 3 )  e.  CC )
223202, 222mpan2 685 . . . . 5  |-  ( X  e.  CC  ->  ( X ^ 3 )  e.  CC )
224192, 223mulcld 9681 . . . 4  |-  ( X  e.  CC  ->  (
2  x.  ( X ^ 3 ) )  e.  CC )
225 sqcl 12375 . . . . 5  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
226202, 101deccl 11088 . . . . . . . 8  |- ; 3 0  e.  NN0
227226nn0cni 10905 . . . . . . 7  |- ; 3 0  e.  CC
228 df-dec 11075 . . . . . . . . 9  |- ; 3 0  =  ( ( 10  x.  3 )  +  0 )
229 10re 10720 . . . . . . . . . . . 12  |-  10  e.  RR
230229recni 9673 . . . . . . . . . . 11  |-  10  e.  CC
231230, 6mulcli 9666 . . . . . . . . . 10  |-  ( 10  x.  3 )  e.  CC
232231addid1i 9838 . . . . . . . . 9  |-  ( ( 10  x.  3 )  +  0 )  =  ( 10  x.  3 )
233228, 232eqtri 2493 . . . . . . . 8  |- ; 3 0  =  ( 10  x.  3 )
234 10pos 10734 . . . . . . . . . 10  |-  0  <  10
235137, 234gtneii 9764 . . . . . . . . 9  |-  10  =/=  0
236230, 6, 235, 185mulne0i 10277 . . . . . . . 8  |-  ( 10  x.  3 )  =/=  0
237233, 236eqnetri 2713 . . . . . . 7  |- ; 3 0  =/=  0
238227, 237reccli 10359 . . . . . 6  |-  ( 1  / ; 3 0 )  e.  CC
239238a1i 11 . . . . 5  |-  ( X  e.  CC  ->  (
1  / ; 3 0 )  e.  CC )
240225, 239subcld 10005 . . . 4  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( 1  / ; 3 0 ) )  e.  CC )
241221, 224, 240subsubd 10033 . . 3  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( 2  x.  ( X ^ 3 ) )  -  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )  =  ( ( ( X ^
4 )  -  (
2  x.  ( X ^ 3 ) ) )  +  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
242162a1i 11 . . . . . . . 8  |-  ( X  e.  CC  ->  (
1  /  5 )  e.  CC )
243 id 22 . . . . . . . . 9  |-  ( X  e.  CC  ->  X  e.  CC )
24488, 205reccli 10359 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
245244a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  /  2 )  e.  CC )
246243, 245subcld 10005 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
247242, 246addcld 9680 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  e.  CC )
248225, 243subcld 10005 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  X )  e.  CC )
249 6pos 10730 . . . . . . . . . . . 12  |-  0  <  6
250137, 249gtneii 9764 . . . . . . . . . . 11  |-  6  =/=  0
251179, 250reccli 10359 . . . . . . . . . 10  |-  ( 1  /  6 )  e.  CC
252251a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  /  6 )  e.  CC )
253248, 252addcld 9680 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) )  e.  CC )
254192, 253mulcld 9681 . . . . . . 7  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  e.  CC )
255247, 254addcld 9680 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  e.  CC )
2566, 88, 205divcli 10371 . . . . . . . . . . 11  |-  ( 3  /  2 )  e.  CC
257256a1i 11 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  /  2 )  e.  CC )
258257, 225mulcld 9681 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( X ^ 2 ) )  e.  CC )
259223, 258subcld 10005 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  e.  CC )
260245, 243mulcld 9681 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 1  /  2
)  x.  X )  e.  CC )
261259, 260addcld 9680 . . . . . . 7  |-  ( X  e.  CC  ->  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) )  e.  CC )
262192, 261mulcld 9681 . . . . . 6  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  e.  CC )
263255, 262addcomd 9853 . . . . 5  |-  ( X  e.  CC  ->  (
( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) ) )  =  ( ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) )  +  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )
264192, 259, 260adddid 9685 . . . . . . 7  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( 2  x.  ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  ( 2  x.  ( ( 1  /  2 )  x.  X ) ) ) )
265192, 223, 258subdid 10095 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) ) )
26688, 205recidi 10360 . . . . . . . . . 10  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
267266oveq1i 6318 . . . . . . . . 9  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  X )  =  ( 1  x.  X
)
268192, 245, 243mulassd 9684 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 2  x.  (
1  /  2 ) )  x.  X )  =  ( 2  x.  ( ( 1  / 
2 )  x.  X
) ) )
269 mulid2 9659 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  x.  X )  =  X )
270267, 268, 2693eqtr3a 2529 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1  /  2 )  x.  X ) )  =  X )
271265, 270oveq12d 6326 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  (
( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) ) )  +  ( 2  x.  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
) )
272264, 271eqtrd 2505 . . . . . 6  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
) )
273272oveq1d 6323 . . . . 5  |-  ( X  e.  CC  ->  (
( 2  x.  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) )
274192, 258mulcld 9681 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  e.  CC )
275224, 274subcld 10005 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  e.  CC )
276275, 243, 255addassd 9683 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  ( X  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) ) )
277243, 255addcld 9680 . . . . . . 7  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  e.  CC )
278224, 274, 277subsubd 10033 . . . . . 6  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( ( 2  x.  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )  =  ( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  ( X  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) ) )
2796, 88, 205divcan2i 10372 . . . . . . . . . . 11  |-  ( 2  x.  ( 3  / 
2 ) )  =  3
280279oveq1i 6318 . . . . . . . . . 10  |-  ( ( 2  x.  ( 3  /  2 ) )  x.  ( X ^
2 ) )  =  ( 3  x.  ( X ^ 2 ) )
281192, 257, 225mulassd 9684 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 2  x.  (
3  /  2 ) )  x.  ( X ^ 2 ) )  =  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )
282280, 281syl5reqr 2520 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
2  x.  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  =  ( 3  x.  ( X ^ 2 ) ) )
283282oveq1d 6323 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) ) ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )
284243, 247, 254add12d 9876 . . . . . . . . . 10  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )
285192, 248, 252adddid 9685 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  =  ( ( 2  x.  ( ( X ^ 2 )  -  X ) )  +  ( 2  x.  (
1  /  6 ) ) ) )
286192, 225, 243subdid 10095 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
2  x.  ( ( X ^ 2 )  -  X ) )  =  ( ( 2  x.  ( X ^
2 ) )  -  ( 2  x.  X
) ) )
287188oveq2i 6319 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  ( 3  x.  2 ) )  =  ( 2  /  6
)
2886, 185reccli 10359 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  3 )  e.  CC
2896, 88, 288mul32i 9847 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  x.  2 )  x.  ( 1  / 
3 ) )  =  ( ( 3  x.  ( 1  /  3
) )  x.  2 )
2906, 185recidi 10360 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 3  x.  ( 1  / 
3 ) )  =  1
291290oveq1i 6318 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 3  x.  ( 1  /  3 ) )  x.  2 )  =  ( 1  x.  2 )
29288mulid2i 9664 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  x.  2 )  =  2
293291, 292eqtri 2493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  x.  ( 1  /  3 ) )  x.  2 )  =  2
294289, 293eqtri 2493 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  x.  2 )  x.  ( 1  / 
3 ) )  =  2
295188, 179eqeltri 2545 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  2 )  e.  CC
296188, 250eqnetri 2713 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  2 )  =/=  0
29788, 295, 288, 296divmuli 10383 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  /  ( 3  x.  2 ) )  =  ( 1  / 
3 )  <->  ( (
3  x.  2 )  x.  ( 1  / 
3 ) )  =  2 )
298294, 297mpbir 214 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  ( 3  x.  2 ) )  =  ( 1  /  3
)
29988, 179, 250divreci 10374 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  6 )  =  ( 2  x.  (
1  /  6 ) )
300287, 298, 2993eqtr3ri 2502 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
6 ) )  =  ( 1  /  3
)
301300a1i 11 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
2  x.  ( 1  /  6 ) )  =  ( 1  / 
3 ) )
302286, 301oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( 2  x.  (
( X ^ 2 )  -  X ) )  +  ( 2  x.  ( 1  / 
6 ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  +  ( 1  /  3
) ) )
303285, 302eqtrd 2505 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  +  ( 1  /  3
) ) )
304303oveq2d 6324 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  =  ( X  +  ( ( ( 2  x.  ( X ^
2 ) )  -  ( 2  x.  X
) )  +  ( 1  /  3 ) ) ) )
305192, 225mulcld 9681 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  ( X ^ 2 ) )  e.  CC )
306192, 243mulcld 9681 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  X )  e.  CC )
307305, 306subcld 10005 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  e.  CC )
308288a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  /  3 )  e.  CC )
309243, 307, 308addassd 9683 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  +  ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  +  ( 1  / 
3 ) )  =  ( X  +  ( ( ( 2  x.  ( X ^ 2 ) )  -  (
2  x.  X ) )  +  ( 1  /  3 ) ) ) )
310243, 305, 306addsub12d 10028 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  +  ( (
2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) ) )
311310oveq1d 6323 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  +  ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  +  ( 1  / 
3 ) )  =  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) )
312304, 309, 3113eqtr2d 2511 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )
313312oveq2d 6324 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )
314284, 313eqtrd 2505 . . . . . . . . 9  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )
315314oveq2d 6324 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )  =  ( ( 3  x.  ( X ^ 2 ) )  -  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) ) ) )
316243, 306subcld 10005 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 2  x.  X ) )  e.  CC )
317305, 316addcld 9680 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  e.  CC )
318242, 246, 317, 308add4d 9878 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )  =  ( ( ( 1  /  5 )  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) )
319242, 305, 316add12d 9876 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) ) ) )
320319oveq1d 6323 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) )  =  ( ( ( 2  x.  ( X ^
2 ) )  +  ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) )
321242, 316addcld 9680 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  e.  CC )
322246, 308addcld 9680 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) )  e.  CC )
323305, 321, 322addassd 9683 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 2  x.  ( X ^ 2 ) )  +  ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) ) )
324318, 320, 3233eqtrd 2509 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )  =  ( ( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) ) ) )
325324oveq2d 6324 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )  =  ( ( 3  x.  ( X ^ 2 ) )  -  (
( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  /  5 )  +  ( X  -  ( 2  x.  X
) ) )  +  ( ( X  -  ( 1  /  2
) )  +  ( 1  /  3 ) ) ) ) ) )
326184, 225mulcld 9681 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  x.  ( X ^ 2 ) )  e.  CC )
327321, 322addcld 9680 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  e.  CC )
328326, 305, 327subsub4d 10036 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  x.  ( X ^ 2 ) )  -  (
2  x.  ( X ^ 2 ) ) )  -  ( ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( ( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) ) ) ) )
3296, 88, 5, 110subaddrii 9983 . . . . . . . . . . . 12  |-  ( 3  -  2 )  =  1
330329oveq1i 6318 . . . . . . . . . . 11  |-  ( ( 3  -  2 )  x.  ( X ^
2 ) )  =  ( 1  x.  ( X ^ 2 ) )
331184, 192, 225subdird 10096 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  -  2 )  x.  ( X ^ 2 ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( 2  x.  ( X ^ 2 ) ) ) )
332225mulid2d 9679 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( X ^ 2 ) )  =  ( X ^
2 ) )
333330, 331, 3323eqtr3a 2529 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( 2  x.  ( X ^ 2 ) ) )  =  ( X ^ 2 ) )
334242, 306, 243subsubd 10033 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  ( ( 2  x.  X )  -  X ) )  =  ( ( ( 1  /  5 )  -  ( 2  x.  X ) )  +  X ) )
335269oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  ( 1  x.  X ) )  =  ( ( 2  x.  X )  -  X ) )
336 2m1e1 10746 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
337336oveq1i 6318 . . . . . . . . . . . . . . . 16  |-  ( ( 2  -  1 )  x.  X )  =  ( 1  x.  X
)
338192, 132, 243subdird 10096 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
( 2  -  1 )  x.  X )  =  ( ( 2  x.  X )  -  ( 1  x.  X
) ) )
339337, 338, 2693eqtr3a 2529 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  ( 1  x.  X ) )  =  X )
340335, 339eqtr3d 2507 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  X )  =  X )
341340oveq2d 6324 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  ( ( 2  x.  X )  -  X ) )  =  ( ( 1  /  5 )  -  X ) )
342242, 306, 243subadd23d 10027 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  (
2  x.  X ) )  +  X )  =  ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) ) )
343334, 341, 3423eqtr3d 2513 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  X )  =  ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) ) )
344243, 245, 308subsubd 10033 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  -  ( (
1  /  2 )  -  ( 1  / 
3 ) ) )  =  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) )
345343, 344oveq12d 6326 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 2  x.  X
) ) )  +  ( ( X  -  ( 1  /  2
) )  +  ( 1  /  3 ) ) ) )
346244, 288subcli 9970 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  e.  CC
347346a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  2
)  -  ( 1  /  3 ) )  e.  CC )
348242, 243, 347npncand 10029 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( ( 1  /  5 )  -  ( ( 1  / 
2 )  -  (
1  /  3 ) ) ) )
349 halfthird 11180 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  =  ( 1  /  6
)
350349oveq2i 6319 . . . . . . . . . . . . 13  |-  ( ( 1  /  5 )  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) )  =  ( ( 1  / 
5 )  -  (
1  /  6 ) )
351 5recm6rec 11181 . . . . . . . . . . . . 13  |-  ( ( 1  /  5 )  -  ( 1  / 
6 ) )  =  ( 1  / ; 3 0 )
352350, 351eqtri 2493 . . . . . . . . . . . 12  |-  ( ( 1  /  5 )  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) )  =  ( 1  / ; 3 0 )
353348, 352syl6eq 2521 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( 1  / ; 3 0 ) )
354345, 353eqtr3d 2507 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  =  ( 1  / ; 3 0 ) )
355333, 354oveq12d 6326 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  x.  ( X ^ 2 ) )  -  (
2  x.  ( X ^ 2 ) ) )  -  ( ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) ) )  =  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) )
356325, 328, 3553eqtr2d 2511 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )  =  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) )
357283, 315, 3563eqtrd 2509 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) ) ) )  =  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) )
358357oveq2d 6324 . . . . . 6  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( ( 2  x.  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )  =  ( ( 2  x.  ( X ^ 3 ) )  -  (
( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
359276, 278, 3583eqtr2d 2511 . . . . 5  |-  ( X  e.  CC  ->  (
( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) ) )
360263, 273, 3593eqtrd 2509 . . . 4  |-  ( X  e.  CC  ->  (
( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) ) )
361360oveq2d 6324 . . 3  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )  =  ( ( X ^
4 )  -  (
( 2  x.  ( X ^ 3 ) )  -  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) ) )
362221, 224subcld 10005 . . . 4  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( 2  x.  ( X ^
3 ) ) )  e.  CC )
363362, 225, 239addsubassd 10025 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) )  =  ( ( ( X ^
4 )  -  (
2  x.  ( X ^ 3 ) ) )  +  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
364241, 361, 3633eqtr4d 2515 . 2  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  (
1  / ; 3 0 ) ) )
3653, 219, 3643eqtrd 2509 1  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641    C_ wss 3390   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   4c4 10683   5c5 10684   6c6 10685   10c10 10689   NN0cn0 10893   ZZcz 10961  ;cdc 11074   ZZ>=cuz 11182   ...cfz 11810   ^cexp 12310    _C cbc 12525   sum_csu 13829   BernPoly cbp 14176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-bpoly 14177
This theorem is referenced by:  fsumcube  14190
  Copyright terms: Public domain W3C validator