Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpoly4 Structured version   Unicode version

Theorem bpoly4 28214
Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly4  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )

Proof of Theorem bpoly4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 4nn0 10610 . . 3  |-  4  e.  NN0
2 bpolyval 28204 . . 3  |-  ( ( 4  e.  NN0  /\  X  e.  CC )  ->  ( 4 BernPoly  X )  =  ( ( X ^ 4 )  -  sum_ k  e.  ( 0 ... ( 4  -  1 ) ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) ) ) )
31, 2mpan 670 . 2  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( X ^ 4 )  -  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) ) ) )
4 4cn 10411 . . . . . . . 8  |-  4  e.  CC
5 ax-1cn 9352 . . . . . . . 8  |-  1  e.  CC
6 3cn 10408 . . . . . . . 8  |-  3  e.  CC
7 3p1e4 10459 . . . . . . . . 9  |-  ( 3  +  1 )  =  4
86, 5, 7addcomli 9573 . . . . . . . 8  |-  ( 1  +  3 )  =  4
94, 5, 6, 8subaddrii 9709 . . . . . . 7  |-  ( 4  -  1 )  =  3
10 df-3 10393 . . . . . . 7  |-  3  =  ( 2  +  1 )
119, 10eqtri 2463 . . . . . 6  |-  ( 4  -  1 )  =  ( 2  +  1 )
1211oveq2i 6114 . . . . 5  |-  ( 0 ... ( 4  -  1 ) )  =  ( 0 ... (
2  +  1 ) )
1312sumeq1i 13187 . . . 4  |-  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
14 2nn0 10608 . . . . . . . 8  |-  2  e.  NN0
15 nn0uz 10907 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
1614, 15eleqtri 2515 . . . . . . 7  |-  2  e.  ( ZZ>= `  0 )
1716a1i 11 . . . . . 6  |-  ( X  e.  CC  ->  2  e.  ( ZZ>= `  0 )
)
18 elfzelz 11465 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  ZZ )
19 bccl 12110 . . . . . . . . . 10  |-  ( ( 4  e.  NN0  /\  k  e.  ZZ )  ->  ( 4  _C  k
)  e.  NN0 )
201, 18, 19sylancr 663 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  _C  k )  e.  NN0 )
2120nn0cnd 10650 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  _C  k )  e.  CC )
2221adantl 466 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( 4  _C  k )  e.  CC )
23 elfznn0 11493 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  NN0 )
24 bpolycl 28207 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
2523, 24sylan 471 . . . . . . . . 9  |-  ( ( k  e.  ( 0 ... ( 2  +  1 ) )  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
2625ancoms 453 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( k BernPoly  X
)  e.  CC )
27 4re 10410 . . . . . . . . . . . . 13  |-  4  e.  RR
2827a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  4  e.  RR )
2918zred 10759 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  RR )
3028, 29resubcld 9788 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  -  k )  e.  RR )
31 peano2re 9554 . . . . . . . . . . 11  |-  ( ( 4  -  k )  e.  RR  ->  (
( 4  -  k
)  +  1 )  e.  RR )
3230, 31syl 16 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  e.  RR )
3332recnd 9424 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  e.  CC )
3433adantl 466 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  -  k )  +  1 )  e.  CC )
35 1re 9397 . . . . . . . . . . . 12  |-  1  e.  RR
3635a1i 11 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  1  e.  RR )
3710oveq2i 6114 . . . . . . . . . . . . . 14  |-  ( 0 ... 3 )  =  ( 0 ... (
2  +  1 ) )
3837eleq2i 2507 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  <->  k  e.  ( 0 ... (
2  +  1 ) ) )
39 elfzelz 11465 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
4039zred 10759 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  RR )
41 3re 10407 . . . . . . . . . . . . . . 15  |-  3  e.  RR
4241a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  3  e.  RR )
4327a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  4  e.  RR )
44 elfzle2 11467 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  k  <_  3 )
45 3lt4 10503 . . . . . . . . . . . . . . 15  |-  3  <  4
4645a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  3  <  4 )
4740, 42, 43, 44, 46lelttrd 9541 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  ->  k  <  4 )
4838, 47sylbir 213 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  <  4 )
4929, 28posdifd 9938 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
k  <  4  <->  0  <  ( 4  -  k ) ) )
5048, 49mpbid 210 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  ( 4  -  k
) )
51 0lt1 9874 . . . . . . . . . . . 12  |-  0  <  1
5251a1i 11 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  1 )
5330, 36, 50, 52addgt0d 9926 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  ( ( 4  -  k )  +  1 ) )
5453gt0ne0d 9916 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  =/=  0 )
5554adantl 466 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  -  k )  +  1 )  =/=  0
)
5626, 34, 55divcld 10119 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) )  e.  CC )
5722, 56mulcld 9418 . . . . . 6  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
5810eqeq2i 2453 . . . . . . 7  |-  ( k  =  3  <->  k  =  ( 2  +  1 ) )
59 oveq2 6111 . . . . . . . . 9  |-  ( k  =  3  ->  (
4  _C  k )  =  ( 4  _C  3 ) )
60 4bc3eq4 27402 . . . . . . . . 9  |-  ( 4  _C  3 )  =  4
6159, 60syl6eq 2491 . . . . . . . 8  |-  ( k  =  3  ->  (
4  _C  k )  =  4 )
62 oveq1 6110 . . . . . . . . 9  |-  ( k  =  3  ->  (
k BernPoly  X )  =  ( 3 BernPoly  X ) )
63 oveq2 6111 . . . . . . . . . . 11  |-  ( k  =  3  ->  (
4  -  k )  =  ( 4  -  3 ) )
6463oveq1d 6118 . . . . . . . . . 10  |-  ( k  =  3  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  3 )  +  1 ) )
654, 6, 5, 7subaddrii 9709 . . . . . . . . . . . 12  |-  ( 4  -  3 )  =  1
6665oveq1i 6113 . . . . . . . . . . 11  |-  ( ( 4  -  3 )  +  1 )  =  ( 1  +  1 )
67 df-2 10392 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
6866, 67eqtr4i 2466 . . . . . . . . . 10  |-  ( ( 4  -  3 )  +  1 )  =  2
6964, 68syl6eq 2491 . . . . . . . . 9  |-  ( k  =  3  ->  (
( 4  -  k
)  +  1 )  =  2 )
7062, 69oveq12d 6121 . . . . . . . 8  |-  ( k  =  3  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 3 BernPoly  X
)  /  2 ) )
7161, 70oveq12d 6121 . . . . . . 7  |-  ( k  =  3  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )
7258, 71sylbir 213 . . . . . 6  |-  ( k  =  ( 2  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )
7317, 57, 72fsump1 13235 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 2 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) ) )
7467oveq2i 6114 . . . . . . . 8  |-  ( 0 ... 2 )  =  ( 0 ... (
1  +  1 ) )
7574sumeq1i 13187 . . . . . . 7  |-  sum_ k  e.  ( 0 ... 2
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
76 1nn0 10607 . . . . . . . . . . 11  |-  1  e.  NN0
7776, 15eleqtri 2515 . . . . . . . . . 10  |-  1  e.  ( ZZ>= `  0 )
7877a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  1  e.  ( ZZ>= `  0 )
)
79 fzssp1 11513 . . . . . . . . . . . 12  |-  ( 0 ... ( 1  +  1 ) )  C_  ( 0 ... (
( 1  +  1 )  +  1 ) )
8067oveq1i 6113 . . . . . . . . . . . . 13  |-  ( 2  +  1 )  =  ( ( 1  +  1 )  +  1 )
8180oveq2i 6114 . . . . . . . . . . . 12  |-  ( 0 ... ( 2  +  1 ) )  =  ( 0 ... (
( 1  +  1 )  +  1 ) )
8279, 81sseqtr4i 3401 . . . . . . . . . . 11  |-  ( 0 ... ( 1  +  1 ) )  C_  ( 0 ... (
2  +  1 ) )
8382sseli 3364 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 1  +  1 ) )  ->  k  e.  ( 0 ... (
2  +  1 ) ) )
8483, 57sylan2 474 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 1  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
8567eqeq2i 2453 . . . . . . . . . 10  |-  ( k  =  2  <->  k  =  ( 1  +  1 ) )
86 oveq2 6111 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
4  _C  k )  =  ( 4  _C  2 ) )
87 4bc2eq6 27403 . . . . . . . . . . . 12  |-  ( 4  _C  2 )  =  6
8886, 87syl6eq 2491 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
4  _C  k )  =  6 )
89 oveq1 6110 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
k BernPoly  X )  =  ( 2 BernPoly  X ) )
90 oveq2 6111 . . . . . . . . . . . . . 14  |-  ( k  =  2  ->  (
4  -  k )  =  ( 4  -  2 ) )
9190oveq1d 6118 . . . . . . . . . . . . 13  |-  ( k  =  2  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  2 )  +  1 ) )
92 2cn 10404 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
93 2p2e4 10451 . . . . . . . . . . . . . . . 16  |-  ( 2  +  2 )  =  4
944, 92, 92, 93subaddrii 9709 . . . . . . . . . . . . . . 15  |-  ( 4  -  2 )  =  2
9594oveq1i 6113 . . . . . . . . . . . . . 14  |-  ( ( 4  -  2 )  +  1 )  =  ( 2  +  1 )
9695, 10eqtr4i 2466 . . . . . . . . . . . . 13  |-  ( ( 4  -  2 )  +  1 )  =  3
9791, 96syl6eq 2491 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
( 4  -  k
)  +  1 )  =  3 )
9889, 97oveq12d 6121 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 2 BernPoly  X
)  /  3 ) )
9988, 98oveq12d 6121 . . . . . . . . . 10  |-  ( k  =  2  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )
10085, 99sylbir 213 . . . . . . . . 9  |-  ( k  =  ( 1  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )
10178, 84, 100fsump1 13235 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 1 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) ) )
102 0p1e1 10445 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
103102oveq2i 6114 . . . . . . . . . . 11  |-  ( 0 ... ( 0  +  1 ) )  =  ( 0 ... 1
)
104103sumeq1i 13187 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... 1
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
105 0nn0 10606 . . . . . . . . . . . . . 14  |-  0  e.  NN0
106105, 15eleqtri 2515 . . . . . . . . . . . . 13  |-  0  e.  ( ZZ>= `  0 )
107106a1i 11 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
108 3nn 10492 . . . . . . . . . . . . . . . . 17  |-  3  e.  NN
109 nnuz 10908 . . . . . . . . . . . . . . . . 17  |-  NN  =  ( ZZ>= `  1 )
110108, 109eleqtri 2515 . . . . . . . . . . . . . . . 16  |-  3  e.  ( ZZ>= `  1 )
111 fzss2 11510 . . . . . . . . . . . . . . . 16  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( 0 ... 1 )  C_  ( 0 ... 3
) )
112110, 111ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 ... 1 )  C_  ( 0 ... 3
)
113 2p1e3 10457 . . . . . . . . . . . . . . . 16  |-  ( 2  +  1 )  =  3
114113oveq2i 6114 . . . . . . . . . . . . . . 15  |-  ( 0 ... ( 2  +  1 ) )  =  ( 0 ... 3
)
115112, 103, 1143sstr4i 3407 . . . . . . . . . . . . . 14  |-  ( 0 ... ( 0  +  1 ) )  C_  ( 0 ... (
2  +  1 ) )
116115sseli 3364 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  ->  k  e.  ( 0 ... (
2  +  1 ) ) )
117116, 57sylan2 474 . . . . . . . . . . . 12  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
118102eqeq2i 2453 . . . . . . . . . . . . 13  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
119 oveq2 6111 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
4  _C  k )  =  ( 4  _C  1 ) )
120 bcn1 12101 . . . . . . . . . . . . . . . 16  |-  ( 4  e.  NN0  ->  ( 4  _C  1 )  =  4 )
1211, 120ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 4  _C  1 )  =  4
122119, 121syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
4  _C  k )  =  4 )
123 oveq1 6110 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
124 oveq2 6111 . . . . . . . . . . . . . . . . 17  |-  ( k  =  1  ->  (
4  -  k )  =  ( 4  -  1 ) )
125124oveq1d 6118 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  1 )  +  1 ) )
1269oveq1i 6113 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  -  1 )  +  1 )  =  ( 3  +  1 )
127 df-4 10394 . . . . . . . . . . . . . . . . 17  |-  4  =  ( 3  +  1 )
128126, 127eqtr4i 2466 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  1 )  +  1 )  =  4
129125, 128syl6eq 2491 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
( 4  -  k
)  +  1 )  =  4 )
130123, 129oveq12d 6121 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  4 ) )
131122, 130oveq12d 6121 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )
132118, 131sylbi 195 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )
133107, 117, 132fsump1 13235 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) ) )
134 0z 10669 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
1355a1i 11 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  1  e.  CC )
136 bpolycl 28207 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  NN0  /\  X  e.  CC )  ->  ( 0 BernPoly  X )  e.  CC )
137105, 136mpan 670 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  e.  CC )
138 5cn 10413 . . . . . . . . . . . . . . . . 17  |-  5  e.  CC
139138a1i 11 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  5  e.  CC )
140 0re 9398 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
141 5pos 10431 . . . . . . . . . . . . . . . . . 18  |-  0  <  5
142140, 141gtneii 9498 . . . . . . . . . . . . . . . . 17  |-  5  =/=  0
143142a1i 11 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  5  =/=  0 )
144137, 139, 143divcld 10119 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  5 )  e.  CC )
145135, 144mulcld 9418 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  e.  CC )
146 oveq2 6111 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
4  _C  k )  =  ( 4  _C  0 ) )
147 bcn0 12098 . . . . . . . . . . . . . . . . . 18  |-  ( 4  e.  NN0  ->  ( 4  _C  0 )  =  1 )
1481, 147ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 4  _C  0 )  =  1
149146, 148syl6eq 2491 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
4  _C  k )  =  1 )
150 oveq1 6110 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
151 oveq2 6111 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
4  -  k )  =  ( 4  -  0 ) )
152151oveq1d 6118 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  0  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  0 )  +  1 ) )
1534subid1i 9692 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  -  0 )  =  4
154153oveq1i 6113 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 4  -  0 )  +  1 )  =  ( 4  +  1 )
155 4p1e5 10460 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  +  1 )  =  5
156154, 155eqtri 2463 . . . . . . . . . . . . . . . . . 18  |-  ( ( 4  -  0 )  +  1 )  =  5
157152, 156syl6eq 2491 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
( 4  -  k
)  +  1 )  =  5 )
158150, 157oveq12d 6121 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  5 ) )
159149, 158oveq12d 6121 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
160159fsum1 13230 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  5 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
161134, 145, 160sylancr 663 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
162 bpoly0 28205 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
163162oveq1d 6118 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  5 )  =  ( 1  /  5
) )
164163oveq2d 6119 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  =  ( 1  x.  ( 1  /  5 ) ) )
165138, 142reccli 10073 . . . . . . . . . . . . . . 15  |-  ( 1  /  5 )  e.  CC
166165mulid2i 9401 . . . . . . . . . . . . . 14  |-  ( 1  x.  ( 1  / 
5 ) )  =  ( 1  /  5
)
167164, 166syl6eq 2491 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  =  ( 1  /  5 ) )
168161, 167eqtrd 2475 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( 1  /  5 ) )
169 bpolycl 28207 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN0  /\  X  e.  CC )  ->  ( 1 BernPoly  X )  e.  CC )
17076, 169mpan 670 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  e.  CC )
171 nn0cn 10601 . . . . . . . . . . . . . . 15  |-  ( 4  e.  NN0  ->  4  e.  CC )
1721, 171mp1i 12 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  4  e.  CC )
173 4ne0 10430 . . . . . . . . . . . . . . 15  |-  4  =/=  0
174173a1i 11 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  4  =/=  0 )
175170, 172, 174divcan2d 10121 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
4  x.  ( ( 1 BernPoly  X )  /  4
) )  =  ( 1 BernPoly  X ) )
176 bpoly1 28206 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
177175, 176eqtrd 2475 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
4  x.  ( ( 1 BernPoly  X )  /  4
) )  =  ( X  -  ( 1  /  2 ) ) )
178168, 177oveq12d 6121 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )  =  ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) ) )
179133, 178eqtrd 2475 . . . . . . . . . 10  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) ) )
180104, 179syl5eqr 2489 . . . . . . . . 9  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 1
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) ) )
181 6cn 10415 . . . . . . . . . . . 12  |-  6  e.  CC
182181a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  6  e.  CC )
183 bpolycl 28207 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  e.  CC )
18414, 183mpan 670 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  e.  CC )
1856a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  3  e.  CC )
186 3ne0 10428 . . . . . . . . . . . 12  |-  3  =/=  0
187186a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  3  =/=  0 )
188182, 184, 185, 187div12d 10155 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
6  x.  ( ( 2 BernPoly  X )  /  3
) )  =  ( ( 2 BernPoly  X )  x.  ( 6  / 
3 ) ) )
189 3t2e6 10485 . . . . . . . . . . . . 13  |-  ( 3  x.  2 )  =  6
190181, 6, 92, 186divmuli 10097 . . . . . . . . . . . . 13  |-  ( ( 6  /  3 )  =  2  <->  ( 3  x.  2 )  =  6 )
191189, 190mpbir 209 . . . . . . . . . . . 12  |-  ( 6  /  3 )  =  2
192191oveq2i 6114 . . . . . . . . . . 11  |-  ( ( 2 BernPoly  X )  x.  (
6  /  3 ) )  =  ( ( 2 BernPoly  X )  x.  2 )
19392a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  2  e.  CC )
194184, 193mulcomd 9419 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  2 )  =  ( 2  x.  ( 2 BernPoly  X ) ) )
195 bpoly2 28212 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
196195oveq2d 6119 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( 2 BernPoly  X ) )  =  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )
197194, 196eqtrd 2475 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  2 )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
198192, 197syl5eq 2487 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  ( 6  /  3
) )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
199188, 198eqtrd 2475 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
6  x.  ( ( 2 BernPoly  X )  /  3
) )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
200180, 199oveq12d 6121 . . . . . . . 8  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) )
201101, 200eqtrd 2475 . . . . . . 7  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )
20275, 201syl5eq 2487 . . . . . 6  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 2
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )
203 3nn0 10609 . . . . . . . . 9  |-  3  e.  NN0
204 bpolycl 28207 . . . . . . . . 9  |-  ( ( 3  e.  NN0  /\  X  e.  CC )  ->  ( 3 BernPoly  X )  e.  CC )
205203, 204mpan 670 . . . . . . . 8  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  e.  CC )
206 2ne0 10426 . . . . . . . . 9  |-  2  =/=  0
207206a1i 11 . . . . . . . 8  |-  ( X  e.  CC  ->  2  =/=  0 )
208172, 205, 193, 207div12d 10155 . . . . . . 7  |-  ( X  e.  CC  ->  (
4  x.  ( ( 3 BernPoly  X )  /  2
) )  =  ( ( 3 BernPoly  X )  x.  ( 4  / 
2 ) ) )
209 4d2e2 10490 . . . . . . . . 9  |-  ( 4  /  2 )  =  2
210209oveq2i 6114 . . . . . . . 8  |-  ( ( 3 BernPoly  X )  x.  (
4  /  2 ) )  =  ( ( 3 BernPoly  X )  x.  2 )
211205, 193mulcomd 9419 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  2 )  =  ( 2  x.  ( 3 BernPoly  X ) ) )
212 bpoly3 28213 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  =  ( ( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )
213212oveq2d 6119 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
2  x.  ( 3 BernPoly  X ) )  =  ( 2  x.  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
214211, 213eqtrd 2475 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  2 )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
215210, 214syl5eq 2487 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  ( 4  /  2
) )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
216208, 215eqtrd 2475 . . . . . 6  |-  ( X  e.  CC  ->  (
4  x.  ( ( 3 BernPoly  X )  /  2
) )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
217202, 216oveq12d 6121 . . . . 5  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 2 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )  =  ( ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
21873, 217eqtrd 2475 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
21913, 218syl5eq 2487 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
220219oveq2d 6119 . 2  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) ) )  =  ( ( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) ) )
221 expcl 11895 . . . . 5  |-  ( ( X  e.  CC  /\  4  e.  NN0 )  -> 
( X ^ 4 )  e.  CC )
2221, 221mpan2 671 . . . 4  |-  ( X  e.  CC  ->  ( X ^ 4 )  e.  CC )
223 expcl 11895 . . . . . 6  |-  ( ( X  e.  CC  /\  3  e.  NN0 )  -> 
( X ^ 3 )  e.  CC )
224203, 223mpan2 671 . . . . 5  |-  ( X  e.  CC  ->  ( X ^ 3 )  e.  CC )
225193, 224mulcld 9418 . . . 4  |-  ( X  e.  CC  ->  (
2  x.  ( X ^ 3 ) )  e.  CC )
226 sqcl 11940 . . . . 5  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
227203, 105deccl 10781 . . . . . . . 8  |- ; 3 0  e.  NN0
228227nn0cni 10603 . . . . . . 7  |- ; 3 0  e.  CC
229 df-dec 10768 . . . . . . . . 9  |- ; 3 0  =  ( ( 10  x.  3 )  +  0 )
230 10re 10422 . . . . . . . . . . . 12  |-  10  e.  RR
231230recni 9410 . . . . . . . . . . 11  |-  10  e.  CC
232231, 6mulcli 9403 . . . . . . . . . 10  |-  ( 10  x.  3 )  e.  CC
233232addid1i 9568 . . . . . . . . 9  |-  ( ( 10  x.  3 )  +  0 )  =  ( 10  x.  3 )
234229, 233eqtri 2463 . . . . . . . 8  |- ; 3 0  =  ( 10  x.  3 )
235 10pos 10436 . . . . . . . . . 10  |-  0  <  10
236140, 235gtneii 9498 . . . . . . . . 9  |-  10  =/=  0
237231, 6, 236, 186mulne0i 9991 . . . . . . . 8  |-  ( 10  x.  3 )  =/=  0
238234, 237eqnetri 2637 . . . . . . 7  |- ; 3 0  =/=  0
239228, 238reccli 10073 . . . . . 6  |-  ( 1  / ; 3 0 )  e.  CC
240239a1i 11 . . . . 5  |-  ( X  e.  CC  ->  (
1  / ; 3 0 )  e.  CC )
241226, 240subcld 9731 . . . 4  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( 1  / ; 3 0 ) )  e.  CC )
242222, 225, 241subsubd 9759 . . 3  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( 2  x.  ( X ^ 3 ) )  -  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )  =  ( ( ( X ^
4 )  -  (
2  x.  ( X ^ 3 ) ) )  +  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
243165a1i 11 . . . . . . . 8  |-  ( X  e.  CC  ->  (
1  /  5 )  e.  CC )
244 id 22 . . . . . . . . 9  |-  ( X  e.  CC  ->  X  e.  CC )
24592, 206reccli 10073 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
246245a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  /  2 )  e.  CC )
247244, 246subcld 9731 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
248243, 247addcld 9417 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  e.  CC )
249226, 244subcld 9731 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  X )  e.  CC )
250 6pos 10432 . . . . . . . . . . . 12  |-  0  <  6
251140, 250gtneii 9498 . . . . . . . . . . 11  |-  6  =/=  0
252181, 251reccli 10073 . . . . . . . . . 10  |-  ( 1  /  6 )  e.  CC
253252a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  /  6 )  e.  CC )
254249, 253addcld 9417 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) )  e.  CC )
255193, 254mulcld 9418 . . . . . . 7  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  e.  CC )
256248, 255addcld 9417 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  e.  CC )
2576, 92, 206divcli 10085 . . . . . . . . . . 11  |-  ( 3  /  2 )  e.  CC
258257a1i 11 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  /  2 )  e.  CC )
259258, 226mulcld 9418 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( X ^ 2 ) )  e.  CC )
260224, 259subcld 9731 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  e.  CC )
261246, 244mulcld 9418 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 1  /  2
)  x.  X )  e.  CC )
262260, 261addcld 9417 . . . . . . 7  |-  ( X  e.  CC  ->  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) )  e.  CC )
263193, 262mulcld 9418 . . . . . 6  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  e.  CC )
264256, 263addcomd 9583 . . . . 5  |-  ( X  e.  CC  ->  (
( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) ) )  =  ( ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) )  +  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )
265193, 260, 261adddid 9422 . . . . . . 7  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( 2  x.  ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  ( 2  x.  ( ( 1  /  2 )  x.  X ) ) ) )
266193, 224, 259subdid 9812 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) ) )
26792, 206recidi 10074 . . . . . . . . . 10  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
268267oveq1i 6113 . . . . . . . . 9  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  X )  =  ( 1  x.  X
)
269193, 246, 244mulassd 9421 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 2  x.  (
1  /  2 ) )  x.  X )  =  ( 2  x.  ( ( 1  / 
2 )  x.  X
) ) )
270 mulid2 9396 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  x.  X )  =  X )
271268, 269, 2703eqtr3a 2499 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1  /  2 )  x.  X ) )  =  X )
272266, 271oveq12d 6121 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  (
( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) ) )  +  ( 2  x.  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
) )
273265, 272eqtrd 2475 . . . . . 6  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
) )
274273oveq1d 6118 . . . . 5  |-  ( X  e.  CC  ->  (
( 2  x.  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) )
275193, 259mulcld 9418 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  e.  CC )
276225, 275subcld 9731 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  e.  CC )
277276, 244, 256addassd 9420 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  ( X  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) ) )
278244, 256addcld 9417 . . . . . . 7  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  e.  CC )
279225, 275, 278subsubd 9759 . . . . . 6  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( ( 2  x.  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )  =  ( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  ( X  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) ) )
2806, 92, 206divcan2i 10086 . . . . . . . . . . 11  |-  ( 2  x.  ( 3  / 
2 ) )  =  3
281280oveq1i 6113 . . . . . . . . . 10  |-  ( ( 2  x.  ( 3  /  2 ) )  x.  ( X ^
2 ) )  =  ( 3  x.  ( X ^ 2 ) )
282193, 258, 226mulassd 9421 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 2  x.  (
3  /  2 ) )  x.  ( X ^ 2 ) )  =  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )
283281, 282syl5reqr 2490 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
2  x.  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  =  ( 3  x.  ( X ^ 2 ) ) )
284283oveq1d 6118 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) ) ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )
285244, 248, 255add12d 9603 . . . . . . . . . 10  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )
286193, 249, 253adddid 9422 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  =  ( ( 2  x.  ( ( X ^ 2 )  -  X ) )  +  ( 2  x.  (
1  /  6 ) ) ) )
287193, 226, 244subdid 9812 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
2  x.  ( ( X ^ 2 )  -  X ) )  =  ( ( 2  x.  ( X ^
2 ) )  -  ( 2  x.  X
) ) )
288189oveq2i 6114 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  ( 3  x.  2 ) )  =  ( 2  /  6
)
2896, 186reccli 10073 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  3 )  e.  CC
2906, 92, 289mul32i 9577 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  x.  2 )  x.  ( 1  / 
3 ) )  =  ( ( 3  x.  ( 1  /  3
) )  x.  2 )
2916, 186recidi 10074 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 3  x.  ( 1  / 
3 ) )  =  1
292291oveq1i 6113 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 3  x.  ( 1  /  3 ) )  x.  2 )  =  ( 1  x.  2 )
29392mulid2i 9401 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  x.  2 )  =  2
294292, 293eqtri 2463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  x.  ( 1  /  3 ) )  x.  2 )  =  2
295290, 294eqtri 2463 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  x.  2 )  x.  ( 1  / 
3 ) )  =  2
296189, 181eqeltri 2513 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  2 )  e.  CC
297189, 251eqnetri 2637 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  2 )  =/=  0
29892, 296, 289, 297divmuli 10097 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  /  ( 3  x.  2 ) )  =  ( 1  / 
3 )  <->  ( (
3  x.  2 )  x.  ( 1  / 
3 ) )  =  2 )
299295, 298mpbir 209 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  ( 3  x.  2 ) )  =  ( 1  /  3
)
30092, 181, 251divreci 10088 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  6 )  =  ( 2  x.  (
1  /  6 ) )
301288, 299, 3003eqtr3ri 2472 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
6 ) )  =  ( 1  /  3
)
302301a1i 11 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
2  x.  ( 1  /  6 ) )  =  ( 1  / 
3 ) )
303287, 302oveq12d 6121 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( 2  x.  (
( X ^ 2 )  -  X ) )  +  ( 2  x.  ( 1  / 
6 ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  +  ( 1  /  3
) ) )
304286, 303eqtrd 2475 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  +  ( 1  /  3
) ) )
305304oveq2d 6119 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  =  ( X  +  ( ( ( 2  x.  ( X ^
2 ) )  -  ( 2  x.  X
) )  +  ( 1  /  3 ) ) ) )
306193, 226mulcld 9418 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  ( X ^ 2 ) )  e.  CC )
307193, 244mulcld 9418 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  X )  e.  CC )
308306, 307subcld 9731 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  e.  CC )
309289a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  /  3 )  e.  CC )
310244, 308, 309addassd 9420 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  +  ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  +  ( 1  / 
3 ) )  =  ( X  +  ( ( ( 2  x.  ( X ^ 2 ) )  -  (
2  x.  X ) )  +  ( 1  /  3 ) ) ) )
311244, 306, 307addsub12d 9754 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  +  ( (
2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) ) )
312311oveq1d 6118 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  +  ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  +  ( 1  / 
3 ) )  =  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) )
313305, 310, 3123eqtr2d 2481 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )
314313oveq2d 6119 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )
315285, 314eqtrd 2475 . . . . . . . . 9  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )
316315oveq2d 6119 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )  =  ( ( 3  x.  ( X ^ 2 ) )  -  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) ) ) )
317244, 307subcld 9731 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 2  x.  X ) )  e.  CC )
318306, 317addcld 9417 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  e.  CC )
319243, 247, 318, 309add4d 9605 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )  =  ( ( ( 1  /  5 )  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) )
320243, 306, 317add12d 9603 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) ) ) )
321320oveq1d 6118 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) )  =  ( ( ( 2  x.  ( X ^
2 ) )  +  ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) )
322243, 317addcld 9417 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  e.  CC )
323247, 309addcld 9417 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) )  e.  CC )
324306, 322, 323addassd 9420 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 2  x.  ( X ^ 2 ) )  +  ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) ) )
325319, 321, 3243eqtrd 2479 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )  =  ( ( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) ) ) )
326325oveq2d 6119 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )  =  ( ( 3  x.  ( X ^ 2 ) )  -  (
( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  /  5 )  +  ( X  -  ( 2  x.  X
) ) )  +  ( ( X  -  ( 1  /  2
) )  +  ( 1  /  3 ) ) ) ) ) )
327185, 226mulcld 9418 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  x.  ( X ^ 2 ) )  e.  CC )
328322, 323addcld 9417 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  e.  CC )
329327, 306, 328subsub4d 9762 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  x.  ( X ^ 2 ) )  -  (
2  x.  ( X ^ 2 ) ) )  -  ( ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( ( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) ) ) ) )
3306, 92, 5, 113subaddrii 9709 . . . . . . . . . . . 12  |-  ( 3  -  2 )  =  1
331330oveq1i 6113 . . . . . . . . . . 11  |-  ( ( 3  -  2 )  x.  ( X ^
2 ) )  =  ( 1  x.  ( X ^ 2 ) )
332185, 193, 226subdird 9813 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  -  2 )  x.  ( X ^ 2 ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( 2  x.  ( X ^ 2 ) ) ) )
333226mulid2d 9416 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( X ^ 2 ) )  =  ( X ^
2 ) )
334331, 332, 3333eqtr3a 2499 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( 2  x.  ( X ^ 2 ) ) )  =  ( X ^ 2 ) )
335243, 307, 244subsubd 9759 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  ( ( 2  x.  X )  -  X ) )  =  ( ( ( 1  /  5 )  -  ( 2  x.  X ) )  +  X ) )
336270oveq2d 6119 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  ( 1  x.  X ) )  =  ( ( 2  x.  X )  -  X ) )
337 2m1e1 10448 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
338337oveq1i 6113 . . . . . . . . . . . . . . . 16  |-  ( ( 2  -  1 )  x.  X )  =  ( 1  x.  X
)
339193, 135, 244subdird 9813 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
( 2  -  1 )  x.  X )  =  ( ( 2  x.  X )  -  ( 1  x.  X
) ) )
340338, 339, 2703eqtr3a 2499 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  ( 1  x.  X ) )  =  X )
341336, 340eqtr3d 2477 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  X )  =  X )
342341oveq2d 6119 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  ( ( 2  x.  X )  -  X ) )  =  ( ( 1  /  5 )  -  X ) )
343243, 307, 244subadd23d 9753 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  (
2  x.  X ) )  +  X )  =  ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) ) )
344335, 342, 3433eqtr3d 2483 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  X )  =  ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) ) )
345244, 246, 309subsubd 9759 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  -  ( (
1  /  2 )  -  ( 1  / 
3 ) ) )  =  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) )
346344, 345oveq12d 6121 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 2  x.  X
) ) )  +  ( ( X  -  ( 1  /  2
) )  +  ( 1  /  3 ) ) ) )
347245, 289subcli 9696 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  e.  CC
348347a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  2
)  -  ( 1  /  3 ) )  e.  CC )
349243, 244, 348npncand 9755 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( ( 1  /  5 )  -  ( ( 1  / 
2 )  -  (
1  /  3 ) ) ) )
350 halfthird 27404 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  =  ( 1  /  6
)
351350oveq2i 6114 . . . . . . . . . . . . 13  |-  ( ( 1  /  5 )  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) )  =  ( ( 1  / 
5 )  -  (
1  /  6 ) )
352 5recm6rec 27405 . . . . . . . . . . . . 13  |-  ( ( 1  /  5 )  -  ( 1  / 
6 ) )  =  ( 1  / ; 3 0 )
353351, 352eqtri 2463 . . . . . . . . . . . 12  |-  ( ( 1  /  5 )  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) )  =  ( 1  / ; 3 0 )
354349, 353syl6eq 2491 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( 1  / ; 3 0 ) )
355346, 354eqtr3d 2477 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  =  ( 1  / ; 3 0 ) )
356334, 355oveq12d 6121 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  x.  ( X ^ 2 ) )  -  (
2  x.  ( X ^ 2 ) ) )  -  ( ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) ) )  =  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) )
357326, 329, 3563eqtr2d 2481 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )  =  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) )
358284, 316, 3573eqtrd 2479 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) ) ) )  =  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) )
359358oveq2d 6119 . . . . . 6  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( ( 2  x.  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )  =  ( ( 2  x.  ( X ^ 3 ) )  -  (
( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
360277, 279, 3593eqtr2d 2481 . . . . 5  |-  ( X  e.  CC  ->  (
( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) ) )
361264, 274, 3603eqtrd 2479 . . . 4  |-  ( X  e.  CC  ->  (
( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) ) )
362361oveq2d 6119 . . 3  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )  =  ( ( X ^
4 )  -  (
( 2  x.  ( X ^ 3 ) )  -  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) ) )
363222, 225subcld 9731 . . . 4  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( 2  x.  ( X ^
3 ) ) )  e.  CC )
364363, 226, 240addsubassd 9751 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) )  =  ( ( ( X ^
4 )  -  (
2  x.  ( X ^ 3 ) ) )  +  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
365242, 362, 3643eqtr4d 2485 . 2  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  (
1  / ; 3 0 ) ) )
3663, 220, 3653eqtrd 2479 1  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618    C_ wss 3340   class class class wbr 4304   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    + caddc 9297    x. cmul 9299    < clt 9430    - cmin 9607    / cdiv 10005   NNcn 10334   2c2 10383   3c3 10384   4c4 10385   5c5 10386   6c6 10387   10c10 10391   NN0cn0 10591   ZZcz 10658  ;cdc 10767   ZZ>=cuz 10873   ...cfz 11449   ^cexp 11877    _C cbc 12090   sum_csu 13175   BernPoly cbp 28201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-rp 11004  df-fz 11450  df-fzo 11561  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-sum 13176  df-pred 27637  df-wrecs 27729  df-bpoly 28202
This theorem is referenced by:  fsumcube  28215
  Copyright terms: Public domain W3C validator