Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpoly4 Structured version   Unicode version

Theorem bpoly4 29974
Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly4  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )

Proof of Theorem bpoly4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 4nn0 10731 . . 3  |-  4  e.  NN0
2 bpolyval 29964 . . 3  |-  ( ( 4  e.  NN0  /\  X  e.  CC )  ->  ( 4 BernPoly  X )  =  ( ( X ^ 4 )  -  sum_ k  e.  ( 0 ... ( 4  -  1 ) ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) ) ) )
31, 2mpan 668 . 2  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( X ^ 4 )  -  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) ) ) )
4 4cn 10530 . . . . . . . 8  |-  4  e.  CC
5 ax-1cn 9461 . . . . . . . 8  |-  1  e.  CC
6 3cn 10527 . . . . . . . 8  |-  3  e.  CC
7 3p1e4 10578 . . . . . . . . 9  |-  ( 3  +  1 )  =  4
86, 5, 7addcomli 9683 . . . . . . . 8  |-  ( 1  +  3 )  =  4
94, 5, 6, 8subaddrii 9822 . . . . . . 7  |-  ( 4  -  1 )  =  3
10 df-3 10512 . . . . . . 7  |-  3  =  ( 2  +  1 )
119, 10eqtri 2411 . . . . . 6  |-  ( 4  -  1 )  =  ( 2  +  1 )
1211oveq2i 6207 . . . . 5  |-  ( 0 ... ( 4  -  1 ) )  =  ( 0 ... (
2  +  1 ) )
1312sumeq1i 13522 . . . 4  |-  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
14 2eluzge0 11045 . . . . . . 7  |-  2  e.  ( ZZ>= `  0 )
1514a1i 11 . . . . . 6  |-  ( X  e.  CC  ->  2  e.  ( ZZ>= `  0 )
)
16 elfzelz 11609 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  ZZ )
17 bccl 12302 . . . . . . . . . 10  |-  ( ( 4  e.  NN0  /\  k  e.  ZZ )  ->  ( 4  _C  k
)  e.  NN0 )
181, 16, 17sylancr 661 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  _C  k )  e.  NN0 )
1918nn0cnd 10771 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  _C  k )  e.  CC )
2019adantl 464 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( 4  _C  k )  e.  CC )
21 elfznn0 11693 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  NN0 )
22 bpolycl 29967 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
2321, 22sylan 469 . . . . . . . . 9  |-  ( ( k  e.  ( 0 ... ( 2  +  1 ) )  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
2423ancoms 451 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( k BernPoly  X
)  e.  CC )
25 4re 10529 . . . . . . . . . . . . 13  |-  4  e.  RR
2625a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  4  e.  RR )
2716zred 10884 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  e.  RR )
2826, 27resubcld 9905 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
4  -  k )  e.  RR )
29 peano2re 9664 . . . . . . . . . . 11  |-  ( ( 4  -  k )  e.  RR  ->  (
( 4  -  k
)  +  1 )  e.  RR )
3028, 29syl 16 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  e.  RR )
3130recnd 9533 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  e.  CC )
3231adantl 464 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  -  k )  +  1 )  e.  CC )
33 1red 9522 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  1  e.  RR )
3410oveq2i 6207 . . . . . . . . . . . . . 14  |-  ( 0 ... 3 )  =  ( 0 ... (
2  +  1 ) )
3534eleq2i 2460 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  <->  k  e.  ( 0 ... (
2  +  1 ) ) )
36 elfzelz 11609 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
3736zred 10884 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  RR )
38 3re 10526 . . . . . . . . . . . . . . 15  |-  3  e.  RR
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  3  e.  RR )
4025a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  4  e.  RR )
41 elfzle2 11611 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  k  <_  3 )
42 3lt4 10622 . . . . . . . . . . . . . . 15  |-  3  <  4
4342a1i 11 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... 3 )  ->  3  <  4 )
4437, 39, 40, 41, 43lelttrd 9651 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  ->  k  <  4 )
4535, 44sylbir 213 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  k  <  4 )
4627, 26posdifd 10056 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
k  <  4  <->  0  <  ( 4  -  k ) ) )
4745, 46mpbid 210 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  ( 4  -  k
) )
48 0lt1 9992 . . . . . . . . . . . 12  |-  0  <  1
4948a1i 11 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  1 )
5028, 33, 47, 49addgt0d 10044 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  0  <  ( ( 4  -  k )  +  1 ) )
5150gt0ne0d 10034 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 2  +  1 ) )  ->  (
( 4  -  k
)  +  1 )  =/=  0 )
5251adantl 464 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  -  k )  +  1 )  =/=  0
)
5324, 32, 52divcld 10237 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) )  e.  CC )
5420, 53mulcld 9527 . . . . . 6  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 2  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
5510eqeq2i 2400 . . . . . . 7  |-  ( k  =  3  <->  k  =  ( 2  +  1 ) )
56 oveq2 6204 . . . . . . . . 9  |-  ( k  =  3  ->  (
4  _C  k )  =  ( 4  _C  3 ) )
57 4bc3eq4 29277 . . . . . . . . 9  |-  ( 4  _C  3 )  =  4
5856, 57syl6eq 2439 . . . . . . . 8  |-  ( k  =  3  ->  (
4  _C  k )  =  4 )
59 oveq1 6203 . . . . . . . . 9  |-  ( k  =  3  ->  (
k BernPoly  X )  =  ( 3 BernPoly  X ) )
60 oveq2 6204 . . . . . . . . . . 11  |-  ( k  =  3  ->  (
4  -  k )  =  ( 4  -  3 ) )
6160oveq1d 6211 . . . . . . . . . 10  |-  ( k  =  3  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  3 )  +  1 ) )
624, 6, 5, 7subaddrii 9822 . . . . . . . . . . . 12  |-  ( 4  -  3 )  =  1
6362oveq1i 6206 . . . . . . . . . . 11  |-  ( ( 4  -  3 )  +  1 )  =  ( 1  +  1 )
64 df-2 10511 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
6563, 64eqtr4i 2414 . . . . . . . . . 10  |-  ( ( 4  -  3 )  +  1 )  =  2
6661, 65syl6eq 2439 . . . . . . . . 9  |-  ( k  =  3  ->  (
( 4  -  k
)  +  1 )  =  2 )
6759, 66oveq12d 6214 . . . . . . . 8  |-  ( k  =  3  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 3 BernPoly  X
)  /  2 ) )
6858, 67oveq12d 6214 . . . . . . 7  |-  ( k  =  3  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )
6955, 68sylbir 213 . . . . . 6  |-  ( k  =  ( 2  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )
7015, 54, 69fsump1 13573 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 2 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) ) )
7164oveq2i 6207 . . . . . . . 8  |-  ( 0 ... 2 )  =  ( 0 ... (
1  +  1 ) )
7271sumeq1i 13522 . . . . . . 7  |-  sum_ k  e.  ( 0 ... 2
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
73 1eluzge0 11044 . . . . . . . . . 10  |-  1  e.  ( ZZ>= `  0 )
7473a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  1  e.  ( ZZ>= `  0 )
)
75 fzssp1 11648 . . . . . . . . . . . 12  |-  ( 0 ... ( 1  +  1 ) )  C_  ( 0 ... (
( 1  +  1 )  +  1 ) )
7664oveq1i 6206 . . . . . . . . . . . . 13  |-  ( 2  +  1 )  =  ( ( 1  +  1 )  +  1 )
7776oveq2i 6207 . . . . . . . . . . . 12  |-  ( 0 ... ( 2  +  1 ) )  =  ( 0 ... (
( 1  +  1 )  +  1 ) )
7875, 77sseqtr4i 3450 . . . . . . . . . . 11  |-  ( 0 ... ( 1  +  1 ) )  C_  ( 0 ... (
2  +  1 ) )
7978sseli 3413 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( 1  +  1 ) )  ->  k  e.  ( 0 ... (
2  +  1 ) ) )
8079, 54sylan2 472 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 1  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
8164eqeq2i 2400 . . . . . . . . . 10  |-  ( k  =  2  <->  k  =  ( 1  +  1 ) )
82 oveq2 6204 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
4  _C  k )  =  ( 4  _C  2 ) )
83 4bc2eq6 29278 . . . . . . . . . . . 12  |-  ( 4  _C  2 )  =  6
8482, 83syl6eq 2439 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
4  _C  k )  =  6 )
85 oveq1 6203 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
k BernPoly  X )  =  ( 2 BernPoly  X ) )
86 oveq2 6204 . . . . . . . . . . . . . 14  |-  ( k  =  2  ->  (
4  -  k )  =  ( 4  -  2 ) )
8786oveq1d 6211 . . . . . . . . . . . . 13  |-  ( k  =  2  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  2 )  +  1 ) )
88 2cn 10523 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
89 2p2e4 10570 . . . . . . . . . . . . . . . 16  |-  ( 2  +  2 )  =  4
904, 88, 88, 89subaddrii 9822 . . . . . . . . . . . . . . 15  |-  ( 4  -  2 )  =  2
9190oveq1i 6206 . . . . . . . . . . . . . 14  |-  ( ( 4  -  2 )  +  1 )  =  ( 2  +  1 )
9291, 10eqtr4i 2414 . . . . . . . . . . . . 13  |-  ( ( 4  -  2 )  +  1 )  =  3
9387, 92syl6eq 2439 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
( 4  -  k
)  +  1 )  =  3 )
9485, 93oveq12d 6214 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 2 BernPoly  X
)  /  3 ) )
9584, 94oveq12d 6214 . . . . . . . . . 10  |-  ( k  =  2  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )
9681, 95sylbir 213 . . . . . . . . 9  |-  ( k  =  ( 1  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )
9774, 80, 96fsump1 13573 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 1 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) ) )
98 0p1e1 10564 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
9998oveq2i 6207 . . . . . . . . . . 11  |-  ( 0 ... ( 0  +  1 ) )  =  ( 0 ... 1
)
10099sumeq1i 13522 . . . . . . . . . 10  |-  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... 1
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )
101 0nn0 10727 . . . . . . . . . . . . . 14  |-  0  e.  NN0
102 nn0uz 11035 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
103101, 102eleqtri 2468 . . . . . . . . . . . . 13  |-  0  e.  ( ZZ>= `  0 )
104103a1i 11 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
105 3nn 10611 . . . . . . . . . . . . . . . . 17  |-  3  e.  NN
106 nnuz 11036 . . . . . . . . . . . . . . . . 17  |-  NN  =  ( ZZ>= `  1 )
107105, 106eleqtri 2468 . . . . . . . . . . . . . . . 16  |-  3  e.  ( ZZ>= `  1 )
108 fzss2 11645 . . . . . . . . . . . . . . . 16  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( 0 ... 1 )  C_  ( 0 ... 3
) )
109107, 108ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 0 ... 1 )  C_  ( 0 ... 3
)
110 2p1e3 10576 . . . . . . . . . . . . . . . 16  |-  ( 2  +  1 )  =  3
111110oveq2i 6207 . . . . . . . . . . . . . . 15  |-  ( 0 ... ( 2  +  1 ) )  =  ( 0 ... 3
)
112109, 99, 1113sstr4i 3456 . . . . . . . . . . . . . 14  |-  ( 0 ... ( 0  +  1 ) )  C_  ( 0 ... (
2  +  1 ) )
113112sseli 3413 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  ->  k  e.  ( 0 ... (
2  +  1 ) ) )
114113, 54sylan2 472 . . . . . . . . . . . 12  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  e.  CC )
11598eqeq2i 2400 . . . . . . . . . . . . 13  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
116 oveq2 6204 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
4  _C  k )  =  ( 4  _C  1 ) )
117 bcn1 12293 . . . . . . . . . . . . . . . 16  |-  ( 4  e.  NN0  ->  ( 4  _C  1 )  =  4 )
1181, 117ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 4  _C  1 )  =  4
119116, 118syl6eq 2439 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
4  _C  k )  =  4 )
120 oveq1 6203 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
121 oveq2 6204 . . . . . . . . . . . . . . . . 17  |-  ( k  =  1  ->  (
4  -  k )  =  ( 4  -  1 ) )
122121oveq1d 6211 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  1 )  +  1 ) )
1239oveq1i 6206 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  -  1 )  +  1 )  =  ( 3  +  1 )
124 df-4 10513 . . . . . . . . . . . . . . . . 17  |-  4  =  ( 3  +  1 )
125123, 124eqtr4i 2414 . . . . . . . . . . . . . . . 16  |-  ( ( 4  -  1 )  +  1 )  =  4
126122, 125syl6eq 2439 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
( 4  -  k
)  +  1 )  =  4 )
127120, 126oveq12d 6214 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  4 ) )
128119, 127oveq12d 6214 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )
129115, 128sylbi 195 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )
130104, 114, 129fsump1 13573 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) ) )
131 0z 10792 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
1325a1i 11 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  1  e.  CC )
133 bpolycl 29967 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  NN0  /\  X  e.  CC )  ->  ( 0 BernPoly  X )  e.  CC )
134101, 133mpan 668 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  e.  CC )
135 5cn 10532 . . . . . . . . . . . . . . . . 17  |-  5  e.  CC
136135a1i 11 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  5  e.  CC )
137 0re 9507 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
138 5pos 10550 . . . . . . . . . . . . . . . . . 18  |-  0  <  5
139137, 138gtneii 9607 . . . . . . . . . . . . . . . . 17  |-  5  =/=  0
140139a1i 11 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  5  =/=  0 )
141134, 136, 140divcld 10237 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  5 )  e.  CC )
142132, 141mulcld 9527 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  e.  CC )
143 oveq2 6204 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
4  _C  k )  =  ( 4  _C  0 ) )
144 bcn0 12290 . . . . . . . . . . . . . . . . . 18  |-  ( 4  e.  NN0  ->  ( 4  _C  0 )  =  1 )
1451, 144ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 4  _C  0 )  =  1
146143, 145syl6eq 2439 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
4  _C  k )  =  1 )
147 oveq1 6203 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
148 oveq2 6204 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
4  -  k )  =  ( 4  -  0 ) )
149148oveq1d 6211 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  0  ->  (
( 4  -  k
)  +  1 )  =  ( ( 4  -  0 )  +  1 ) )
1504subid1i 9804 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  -  0 )  =  4
151150oveq1i 6206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 4  -  0 )  +  1 )  =  ( 4  +  1 )
152 4p1e5 10579 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  +  1 )  =  5
153151, 152eqtri 2411 . . . . . . . . . . . . . . . . . 18  |-  ( ( 4  -  0 )  +  1 )  =  5
154149, 153syl6eq 2439 . . . . . . . . . . . . . . . . 17  |-  ( k  =  0  ->  (
( 4  -  k
)  +  1 )  =  5 )
155147, 154oveq12d 6214 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 4  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  5 ) )
156146, 155oveq12d 6214 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
157156fsum1 13566 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  5 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
158131, 142, 157sylancr 661 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  5
) ) )
159 bpoly0 29965 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
160159oveq1d 6211 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  5 )  =  ( 1  /  5
) )
161160oveq2d 6212 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  =  ( 1  x.  ( 1  /  5 ) ) )
162135, 139reccli 10191 . . . . . . . . . . . . . . 15  |-  ( 1  /  5 )  e.  CC
163162mulid2i 9510 . . . . . . . . . . . . . 14  |-  ( 1  x.  ( 1  / 
5 ) )  =  ( 1  /  5
)
164161, 163syl6eq 2439 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  5
) )  =  ( 1  /  5 ) )
165158, 164eqtrd 2423 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( 1  /  5 ) )
166 1nn0 10728 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
167 bpolycl 29967 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN0  /\  X  e.  CC )  ->  ( 1 BernPoly  X )  e.  CC )
168166, 167mpan 668 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  e.  CC )
169 nn0cn 10722 . . . . . . . . . . . . . . 15  |-  ( 4  e.  NN0  ->  4  e.  CC )
1701, 169mp1i 12 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  4  e.  CC )
171 4ne0 10549 . . . . . . . . . . . . . . 15  |-  4  =/=  0
172171a1i 11 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  4  =/=  0 )
173168, 170, 172divcan2d 10239 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
4  x.  ( ( 1 BernPoly  X )  /  4
) )  =  ( 1 BernPoly  X ) )
174 bpoly1 29966 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
175173, 174eqtrd 2423 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
4  x.  ( ( 1 BernPoly  X )  /  4
) )  =  ( X  -  ( 1  /  2 ) ) )
176165, 175oveq12d 6214 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 1 BernPoly  X )  /  4
) ) )  =  ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) ) )
177130, 176eqtrd 2423 . . . . . . . . . 10  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) ) )
178100, 177syl5eqr 2437 . . . . . . . . 9  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 1
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) ) )
179 6cn 10534 . . . . . . . . . . . 12  |-  6  e.  CC
180179a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  6  e.  CC )
181 2nn0 10729 . . . . . . . . . . . 12  |-  2  e.  NN0
182 bpolycl 29967 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  e.  CC )
183181, 182mpan 668 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  e.  CC )
1846a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  3  e.  CC )
185 3ne0 10547 . . . . . . . . . . . 12  |-  3  =/=  0
186185a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  3  =/=  0 )
187180, 183, 184, 186div12d 10273 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
6  x.  ( ( 2 BernPoly  X )  /  3
) )  =  ( ( 2 BernPoly  X )  x.  ( 6  / 
3 ) ) )
188 3t2e6 10604 . . . . . . . . . . . . 13  |-  ( 3  x.  2 )  =  6
189179, 6, 88, 185divmuli 10215 . . . . . . . . . . . . 13  |-  ( ( 6  /  3 )  =  2  <->  ( 3  x.  2 )  =  6 )
190188, 189mpbir 209 . . . . . . . . . . . 12  |-  ( 6  /  3 )  =  2
191190oveq2i 6207 . . . . . . . . . . 11  |-  ( ( 2 BernPoly  X )  x.  (
6  /  3 ) )  =  ( ( 2 BernPoly  X )  x.  2 )
19288a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  2  e.  CC )
193183, 192mulcomd 9528 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  2 )  =  ( 2  x.  ( 2 BernPoly  X ) ) )
194 bpoly2 29972 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
195194oveq2d 6212 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( 2 BernPoly  X ) )  =  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )
196193, 195eqtrd 2423 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  2 )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
197191, 196syl5eq 2435 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  ( 6  /  3
) )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
198187, 197eqtrd 2423 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
6  x.  ( ( 2 BernPoly  X )  /  3
) )  =  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )
199178, 198oveq12d 6214 . . . . . . . 8  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 6  x.  ( ( 2 BernPoly  X )  /  3
) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) )
20097, 199eqtrd 2423 . . . . . . 7  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )
20172, 200syl5eq 2435 . . . . . 6  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 2
) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )
202 3nn0 10730 . . . . . . . . 9  |-  3  e.  NN0
203 bpolycl 29967 . . . . . . . . 9  |-  ( ( 3  e.  NN0  /\  X  e.  CC )  ->  ( 3 BernPoly  X )  e.  CC )
204202, 203mpan 668 . . . . . . . 8  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  e.  CC )
205 2ne0 10545 . . . . . . . . 9  |-  2  =/=  0
206205a1i 11 . . . . . . . 8  |-  ( X  e.  CC  ->  2  =/=  0 )
207170, 204, 192, 206div12d 10273 . . . . . . 7  |-  ( X  e.  CC  ->  (
4  x.  ( ( 3 BernPoly  X )  /  2
) )  =  ( ( 3 BernPoly  X )  x.  ( 4  / 
2 ) ) )
208 4d2e2 10609 . . . . . . . . 9  |-  ( 4  /  2 )  =  2
209208oveq2i 6207 . . . . . . . 8  |-  ( ( 3 BernPoly  X )  x.  (
4  /  2 ) )  =  ( ( 3 BernPoly  X )  x.  2 )
210204, 192mulcomd 9528 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  2 )  =  ( 2  x.  ( 3 BernPoly  X ) ) )
211 bpoly3 29973 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  =  ( ( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )
212211oveq2d 6212 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
2  x.  ( 3 BernPoly  X ) )  =  ( 2  x.  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
213210, 212eqtrd 2423 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  2 )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
214209, 213syl5eq 2435 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 3 BernPoly  X )  x.  ( 4  /  2
) )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
215207, 214eqtrd 2423 . . . . . 6  |-  ( X  e.  CC  ->  (
4  x.  ( ( 3 BernPoly  X )  /  2
) )  =  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) )
216201, 215oveq12d 6214 . . . . 5  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 2 ) ( ( 4  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 4  -  k
)  +  1 ) ) )  +  ( 4  x.  ( ( 3 BernPoly  X )  /  2
) ) )  =  ( ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
21770, 216eqtrd 2423 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  +  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
21813, 217syl5eq 2435 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) )  =  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )
219218oveq2d 6212 . 2  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  sum_ k  e.  ( 0 ... (
4  -  1 ) ) ( ( 4  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 4  -  k )  +  1 ) ) ) )  =  ( ( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) ) )
220 expcl 12087 . . . . 5  |-  ( ( X  e.  CC  /\  4  e.  NN0 )  -> 
( X ^ 4 )  e.  CC )
2211, 220mpan2 669 . . . 4  |-  ( X  e.  CC  ->  ( X ^ 4 )  e.  CC )
222 expcl 12087 . . . . . 6  |-  ( ( X  e.  CC  /\  3  e.  NN0 )  -> 
( X ^ 3 )  e.  CC )
223202, 222mpan2 669 . . . . 5  |-  ( X  e.  CC  ->  ( X ^ 3 )  e.  CC )
224192, 223mulcld 9527 . . . 4  |-  ( X  e.  CC  ->  (
2  x.  ( X ^ 3 ) )  e.  CC )
225 sqcl 12133 . . . . 5  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
226202, 101deccl 10909 . . . . . . . 8  |- ; 3 0  e.  NN0
227226nn0cni 10724 . . . . . . 7  |- ; 3 0  e.  CC
228 df-dec 10896 . . . . . . . . 9  |- ; 3 0  =  ( ( 10  x.  3 )  +  0 )
229 10re 10541 . . . . . . . . . . . 12  |-  10  e.  RR
230229recni 9519 . . . . . . . . . . 11  |-  10  e.  CC
231230, 6mulcli 9512 . . . . . . . . . 10  |-  ( 10  x.  3 )  e.  CC
232231addid1i 9678 . . . . . . . . 9  |-  ( ( 10  x.  3 )  +  0 )  =  ( 10  x.  3 )
233228, 232eqtri 2411 . . . . . . . 8  |- ; 3 0  =  ( 10  x.  3 )
234 10pos 10555 . . . . . . . . . 10  |-  0  <  10
235137, 234gtneii 9607 . . . . . . . . 9  |-  10  =/=  0
236230, 6, 235, 185mulne0i 10109 . . . . . . . 8  |-  ( 10  x.  3 )  =/=  0
237233, 236eqnetri 2678 . . . . . . 7  |- ; 3 0  =/=  0
238227, 237reccli 10191 . . . . . 6  |-  ( 1  / ; 3 0 )  e.  CC
239238a1i 11 . . . . 5  |-  ( X  e.  CC  ->  (
1  / ; 3 0 )  e.  CC )
240225, 239subcld 9844 . . . 4  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( 1  / ; 3 0 ) )  e.  CC )
241221, 224, 240subsubd 9872 . . 3  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( 2  x.  ( X ^ 3 ) )  -  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )  =  ( ( ( X ^
4 )  -  (
2  x.  ( X ^ 3 ) ) )  +  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
242162a1i 11 . . . . . . . 8  |-  ( X  e.  CC  ->  (
1  /  5 )  e.  CC )
243 id 22 . . . . . . . . 9  |-  ( X  e.  CC  ->  X  e.  CC )
24488, 205reccli 10191 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
245244a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  /  2 )  e.  CC )
246243, 245subcld 9844 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
247242, 246addcld 9526 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  e.  CC )
248225, 243subcld 9844 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  X )  e.  CC )
249 6pos 10551 . . . . . . . . . . . 12  |-  0  <  6
250137, 249gtneii 9607 . . . . . . . . . . 11  |-  6  =/=  0
251179, 250reccli 10191 . . . . . . . . . 10  |-  ( 1  /  6 )  e.  CC
252251a1i 11 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  /  6 )  e.  CC )
253248, 252addcld 9526 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) )  e.  CC )
254192, 253mulcld 9527 . . . . . . 7  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  e.  CC )
255247, 254addcld 9526 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  e.  CC )
2566, 88, 205divcli 10203 . . . . . . . . . . 11  |-  ( 3  /  2 )  e.  CC
257256a1i 11 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  /  2 )  e.  CC )
258257, 225mulcld 9527 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( X ^ 2 ) )  e.  CC )
259223, 258subcld 9844 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  e.  CC )
260245, 243mulcld 9527 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 1  /  2
)  x.  X )  e.  CC )
261259, 260addcld 9526 . . . . . . 7  |-  ( X  e.  CC  ->  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) )  e.  CC )
262192, 261mulcld 9527 . . . . . 6  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  e.  CC )
263255, 262addcomd 9693 . . . . 5  |-  ( X  e.  CC  ->  (
( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) ) )  =  ( ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) )  +  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )
264192, 259, 260adddid 9531 . . . . . . 7  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( 2  x.  ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  ( 2  x.  ( ( 1  /  2 )  x.  X ) ) ) )
265192, 223, 258subdid 9930 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) ) )
26688, 205recidi 10192 . . . . . . . . . 10  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
267266oveq1i 6206 . . . . . . . . 9  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  X )  =  ( 1  x.  X
)
268192, 245, 243mulassd 9530 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 2  x.  (
1  /  2 ) )  x.  X )  =  ( 2  x.  ( ( 1  / 
2 )  x.  X
) ) )
269 mulid2 9505 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  x.  X )  =  X )
270267, 268, 2693eqtr3a 2447 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1  /  2 )  x.  X ) )  =  X )
271265, 270oveq12d 6214 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  (
( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) ) )  +  ( 2  x.  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
) )
272264, 271eqtrd 2423 . . . . . 6  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
) )
273272oveq1d 6211 . . . . 5  |-  ( X  e.  CC  ->  (
( 2  x.  (
( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) )
274192, 258mulcld 9527 . . . . . . . 8  |-  ( X  e.  CC  ->  (
2  x.  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  e.  CC )
275224, 274subcld 9844 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  e.  CC )
276275, 243, 255addassd 9529 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 2  x.  ( X ^ 3 ) )  -  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )  +  ( X  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) ) )
277243, 255addcld 9526 . . . . . . 7  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  e.  CC )
278224, 274, 277subsubd 9872 . . . . . 6  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( ( 2  x.  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )  =  ( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  ( X  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) ) ) )
2796, 88, 205divcan2i 10204 . . . . . . . . . . 11  |-  ( 2  x.  ( 3  / 
2 ) )  =  3
280279oveq1i 6206 . . . . . . . . . 10  |-  ( ( 2  x.  ( 3  /  2 ) )  x.  ( X ^
2 ) )  =  ( 3  x.  ( X ^ 2 ) )
281192, 257, 225mulassd 9530 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 2  x.  (
3  /  2 ) )  x.  ( X ^ 2 ) )  =  ( 2  x.  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) ) )
282280, 281syl5reqr 2438 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
2  x.  ( ( 3  /  2 )  x.  ( X ^
2 ) ) )  =  ( 3  x.  ( X ^ 2 ) ) )
283282oveq1d 6211 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) ) ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )
284243, 247, 254add12d 9714 . . . . . . . . . 10  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )
285192, 248, 252adddid 9531 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  =  ( ( 2  x.  ( ( X ^ 2 )  -  X ) )  +  ( 2  x.  (
1  /  6 ) ) ) )
286192, 225, 243subdid 9930 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
2  x.  ( ( X ^ 2 )  -  X ) )  =  ( ( 2  x.  ( X ^
2 ) )  -  ( 2  x.  X
) ) )
287188oveq2i 6207 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  ( 3  x.  2 ) )  =  ( 2  /  6
)
2886, 185reccli 10191 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  3 )  e.  CC
2896, 88, 288mul32i 9687 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  x.  2 )  x.  ( 1  / 
3 ) )  =  ( ( 3  x.  ( 1  /  3
) )  x.  2 )
2906, 185recidi 10192 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 3  x.  ( 1  / 
3 ) )  =  1
291290oveq1i 6206 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 3  x.  ( 1  /  3 ) )  x.  2 )  =  ( 1  x.  2 )
29288mulid2i 9510 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  x.  2 )  =  2
293291, 292eqtri 2411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  x.  ( 1  /  3 ) )  x.  2 )  =  2
294289, 293eqtri 2411 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  x.  2 )  x.  ( 1  / 
3 ) )  =  2
295188, 179eqeltri 2466 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  2 )  e.  CC
296188, 250eqnetri 2678 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  2 )  =/=  0
29788, 295, 288, 296divmuli 10215 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  /  ( 3  x.  2 ) )  =  ( 1  / 
3 )  <->  ( (
3  x.  2 )  x.  ( 1  / 
3 ) )  =  2 )
298294, 297mpbir 209 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  ( 3  x.  2 ) )  =  ( 1  /  3
)
29988, 179, 250divreci 10206 . . . . . . . . . . . . . . . . 17  |-  ( 2  /  6 )  =  ( 2  x.  (
1  /  6 ) )
300287, 298, 2993eqtr3ri 2420 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( 1  / 
6 ) )  =  ( 1  /  3
)
301300a1i 11 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
2  x.  ( 1  /  6 ) )  =  ( 1  / 
3 ) )
302286, 301oveq12d 6214 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( 2  x.  (
( X ^ 2 )  -  X ) )  +  ( 2  x.  ( 1  / 
6 ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  +  ( 1  /  3
) ) )
303285, 302eqtrd 2423 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  +  ( 1  /  3
) ) )
304303oveq2d 6212 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  =  ( X  +  ( ( ( 2  x.  ( X ^
2 ) )  -  ( 2  x.  X
) )  +  ( 1  /  3 ) ) ) )
305192, 225mulcld 9527 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  ( X ^ 2 ) )  e.  CC )
306192, 243mulcld 9527 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
2  x.  X )  e.  CC )
307305, 306subcld 9844 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) )  e.  CC )
308288a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  /  3 )  e.  CC )
309243, 307, 308addassd 9529 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  +  ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  +  ( 1  / 
3 ) )  =  ( X  +  ( ( ( 2  x.  ( X ^ 2 ) )  -  (
2  x.  X ) )  +  ( 1  /  3 ) ) ) )
310243, 305, 306addsub12d 9867 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  +  ( (
2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) ) )
311310oveq1d 6211 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  +  ( ( 2  x.  ( X ^ 2 ) )  -  ( 2  x.  X ) ) )  +  ( 1  / 
3 ) )  =  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) )
312304, 309, 3113eqtr2d 2429 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  =  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )
313312oveq2d 6212 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( X  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )
314284, 313eqtrd 2423 . . . . . . . . 9  |-  ( X  e.  CC  ->  ( X  +  ( (
( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )
315314oveq2d 6212 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) ) ) )  =  ( ( 3  x.  ( X ^ 2 ) )  -  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) ) ) )
316243, 306subcld 9844 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 2  x.  X ) )  e.  CC )
317305, 316addcld 9526 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  e.  CC )
318242, 246, 317, 308add4d 9716 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )  =  ( ( ( 1  /  5 )  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) )
319242, 305, 316add12d 9714 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) ) ) )
320319oveq1d 6211 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) )  =  ( ( ( 2  x.  ( X ^
2 ) )  +  ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) )
321242, 316addcld 9526 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  e.  CC )
322246, 308addcld 9526 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) )  e.  CC )
323305, 321, 322addassd 9529 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 2  x.  ( X ^ 2 ) )  +  ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  =  ( ( 2  x.  ( X ^
2 ) )  +  ( ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) )  +  ( ( X  -  (
1  /  2 ) )  +  ( 1  /  3 ) ) ) ) )
324318, 320, 3233eqtrd 2427 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 2  x.  ( X ^ 2 ) )  +  ( X  -  ( 2  x.  X
) ) )  +  ( 1  /  3
) ) )  =  ( ( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) ) ) )
325324oveq2d 6212 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )  =  ( ( 3  x.  ( X ^ 2 ) )  -  (
( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  /  5 )  +  ( X  -  ( 2  x.  X
) ) )  +  ( ( X  -  ( 1  /  2
) )  +  ( 1  /  3 ) ) ) ) ) )
326184, 225mulcld 9527 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  x.  ( X ^ 2 ) )  e.  CC )
327321, 322addcld 9526 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  e.  CC )
328326, 305, 327subsub4d 9875 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  x.  ( X ^ 2 ) )  -  (
2  x.  ( X ^ 2 ) ) )  -  ( ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( ( 2  x.  ( X ^ 2 ) )  +  ( ( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) ) ) ) )
3296, 88, 5, 110subaddrii 9822 . . . . . . . . . . . 12  |-  ( 3  -  2 )  =  1
330329oveq1i 6206 . . . . . . . . . . 11  |-  ( ( 3  -  2 )  x.  ( X ^
2 ) )  =  ( 1  x.  ( X ^ 2 ) )
331184, 192, 225subdird 9931 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  -  2 )  x.  ( X ^ 2 ) )  =  ( ( 3  x.  ( X ^
2 ) )  -  ( 2  x.  ( X ^ 2 ) ) ) )
332225mulid2d 9525 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( X ^ 2 ) )  =  ( X ^
2 ) )
333330, 331, 3323eqtr3a 2447 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( 2  x.  ( X ^ 2 ) ) )  =  ( X ^ 2 ) )
334242, 306, 243subsubd 9872 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  ( ( 2  x.  X )  -  X ) )  =  ( ( ( 1  /  5 )  -  ( 2  x.  X ) )  +  X ) )
335269oveq2d 6212 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  ( 1  x.  X ) )  =  ( ( 2  x.  X )  -  X ) )
336 2m1e1 10567 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
337336oveq1i 6206 . . . . . . . . . . . . . . . 16  |-  ( ( 2  -  1 )  x.  X )  =  ( 1  x.  X
)
338192, 132, 243subdird 9931 . . . . . . . . . . . . . . . 16  |-  ( X  e.  CC  ->  (
( 2  -  1 )  x.  X )  =  ( ( 2  x.  X )  -  ( 1  x.  X
) ) )
339337, 338, 2693eqtr3a 2447 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  ( 1  x.  X ) )  =  X )
340335, 339eqtr3d 2425 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( 2  x.  X
)  -  X )  =  X )
341340oveq2d 6212 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  ( ( 2  x.  X )  -  X ) )  =  ( ( 1  /  5 )  -  X ) )
342242, 306, 243subadd23d 9866 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  (
2  x.  X ) )  +  X )  =  ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) ) )
343334, 341, 3423eqtr3d 2431 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  5
)  -  X )  =  ( ( 1  /  5 )  +  ( X  -  (
2  x.  X ) ) ) )
344243, 245, 308subsubd 9872 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  -  ( (
1  /  2 )  -  ( 1  / 
3 ) ) )  =  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) )
345343, 344oveq12d 6214 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( ( ( 1  /  5 )  +  ( X  -  ( 2  x.  X
) ) )  +  ( ( X  -  ( 1  /  2
) )  +  ( 1  /  3 ) ) ) )
346244, 288subcli 9808 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  e.  CC
347346a1i 11 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  2
)  -  ( 1  /  3 ) )  e.  CC )
348242, 243, 347npncand 9868 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( ( 1  /  5 )  -  ( ( 1  / 
2 )  -  (
1  /  3 ) ) ) )
349 halfthird 29279 . . . . . . . . . . . . . 14  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  =  ( 1  /  6
)
350349oveq2i 6207 . . . . . . . . . . . . 13  |-  ( ( 1  /  5 )  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) )  =  ( ( 1  / 
5 )  -  (
1  /  6 ) )
351 5recm6rec 29280 . . . . . . . . . . . . 13  |-  ( ( 1  /  5 )  -  ( 1  / 
6 ) )  =  ( 1  / ; 3 0 )
352350, 351eqtri 2411 . . . . . . . . . . . 12  |-  ( ( 1  /  5 )  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) )  =  ( 1  / ; 3 0 )
353348, 352syl6eq 2439 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  -  X
)  +  ( X  -  ( ( 1  /  2 )  -  ( 1  /  3
) ) ) )  =  ( 1  / ; 3 0 ) )
354345, 353eqtr3d 2425 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 1  / 
5 )  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  /  2 ) )  +  ( 1  / 
3 ) ) )  =  ( 1  / ; 3 0 ) )
355333, 354oveq12d 6214 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  x.  ( X ^ 2 ) )  -  (
2  x.  ( X ^ 2 ) ) )  -  ( ( ( 1  /  5
)  +  ( X  -  ( 2  x.  X ) ) )  +  ( ( X  -  ( 1  / 
2 ) )  +  ( 1  /  3
) ) ) )  =  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) )
356325, 328, 3553eqtr2d 2429 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 3  x.  ( X ^ 2 ) )  -  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 2  x.  ( X ^
2 ) )  +  ( X  -  (
2  x.  X ) ) )  +  ( 1  /  3 ) ) ) )  =  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) )
357283, 315, 3563eqtrd 2427 . . . . . . 7  |-  ( X  e.  CC  ->  (
( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  -  ( X  +  ( ( ( 1  /  5 )  +  ( X  -  ( 1  /  2
) ) )  +  ( 2  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) ) ) )  =  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) )
358357oveq2d 6212 . . . . . 6  |-  ( X  e.  CC  ->  (
( 2  x.  ( X ^ 3 ) )  -  ( ( 2  x.  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  -  ( X  +  (
( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) ) ) ) )  =  ( ( 2  x.  ( X ^ 3 ) )  -  (
( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
359276, 278, 3583eqtr2d 2429 . . . . 5  |-  ( X  e.  CC  ->  (
( ( ( 2  x.  ( X ^
3 ) )  -  ( 2  x.  (
( 3  /  2
)  x.  ( X ^ 2 ) ) ) )  +  X
)  +  ( ( ( 1  /  5
)  +  ( X  -  ( 1  / 
2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) ) )
360263, 273, 3593eqtrd 2427 . . . 4  |-  ( X  e.  CC  ->  (
( ( ( 1  /  5 )  +  ( X  -  (
1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) ) )  =  ( ( 2  x.  ( X ^
3 ) )  -  ( ( X ^
2 )  -  (
1  / ; 3 0 ) ) ) )
361360oveq2d 6212 . . 3  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )  =  ( ( X ^
4 )  -  (
( 2  x.  ( X ^ 3 ) )  -  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) ) )
362221, 224subcld 9844 . . . 4  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( 2  x.  ( X ^
3 ) ) )  e.  CC )
363362, 225, 239addsubassd 9864 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) )  =  ( ( ( X ^
4 )  -  (
2  x.  ( X ^ 3 ) ) )  +  ( ( X ^ 2 )  -  ( 1  / ; 3 0 ) ) ) )
364241, 361, 3633eqtr4d 2433 . 2  |-  ( X  e.  CC  ->  (
( X ^ 4 )  -  ( ( ( ( 1  / 
5 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( 2  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) ) )  +  ( 2  x.  ( ( ( X ^ 3 )  -  ( ( 3  / 
2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) ) ) )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  (
1  / ; 3 0 ) ) )
3653, 219, 3643eqtrd 2427 1  |-  ( X  e.  CC  ->  (
4 BernPoly  X )  =  ( ( ( ( X ^ 4 )  -  ( 2  x.  ( X ^ 3 ) ) )  +  ( X ^ 2 ) )  -  ( 1  / ; 3 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577    C_ wss 3389   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   CCcc 9401   RRcr 9402   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408    < clt 9539    - cmin 9718    / cdiv 10123   NNcn 10452   2c2 10502   3c3 10503   4c4 10504   5c5 10505   6c6 10506   10c10 10510   NN0cn0 10712   ZZcz 10781  ;cdc 10895   ZZ>=cuz 11001   ...cfz 11593   ^cexp 12069    _C cbc 12282   sum_csu 13510   BernPoly cbp 29961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-rp 11140  df-fz 11594  df-fzo 11718  df-seq 12011  df-exp 12070  df-fac 12256  df-bc 12283  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-sum 13511  df-pred 29409  df-wrecs 29501  df-bpoly 29962
This theorem is referenced by:  fsumcube  29975
  Copyright terms: Public domain W3C validator