Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpoly3 Unicode version

Theorem bpoly3 26008
Description: The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly3  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  =  ( ( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )

Proof of Theorem bpoly3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 3nn0 10195 . . 3  |-  3  e.  NN0
2 bpolyval 25999 . . 3  |-  ( ( 3  e.  NN0  /\  X  e.  CC )  ->  ( 3 BernPoly  X )  =  ( ( X ^ 3 )  -  sum_ k  e.  ( 0 ... ( 3  -  1 ) ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) ) ) )
31, 2mpan 652 . 2  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  =  ( ( X ^ 3 )  -  sum_ k  e.  ( 0 ... (
3  -  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) ) ) )
4 3m1e2 10052 . . . . . . 7  |-  ( 3  -  1 )  =  2
5 df-2 10014 . . . . . . 7  |-  2  =  ( 1  +  1 )
64, 5eqtri 2424 . . . . . 6  |-  ( 3  -  1 )  =  ( 1  +  1 )
76oveq2i 6051 . . . . 5  |-  ( 0 ... ( 3  -  1 ) )  =  ( 0 ... (
1  +  1 ) )
87sumeq1i 12447 . . . 4  |-  sum_ k  e.  ( 0 ... (
3  -  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )
9 1nn0 10193 . . . . . . . 8  |-  1  e.  NN0
10 nn0uz 10476 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
119, 10eleqtri 2476 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
1211a1i 11 . . . . . 6  |-  ( X  e.  CC  ->  1  e.  ( ZZ>= `  0 )
)
13 0z 10249 . . . . . . . . . . . . 13  |-  0  e.  ZZ
14 fzpr 11057 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
1513, 14ax-mp 8 . . . . . . . . . . . 12  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
16 0p1e1 10049 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
1716oveq2i 6051 . . . . . . . . . . . 12  |-  ( 0 ... ( 0  +  1 ) )  =  ( 0 ... 1
)
1816preq2i 3847 . . . . . . . . . . . 12  |-  { 0 ,  ( 0  +  1 ) }  =  { 0 ,  1 }
1915, 17, 183eqtr3ri 2433 . . . . . . . . . . 11  |-  { 0 ,  1 }  =  ( 0 ... 1
)
205sneqi 3786 . . . . . . . . . . 11  |-  { 2 }  =  { ( 1  +  1 ) }
2119, 20uneq12i 3459 . . . . . . . . . 10  |-  ( { 0 ,  1 }  u.  { 2 } )  =  ( ( 0 ... 1 )  u.  { ( 1  +  1 ) } )
22 df-tp 3782 . . . . . . . . . 10  |-  { 0 ,  1 ,  2 }  =  ( { 0 ,  1 }  u.  { 2 } )
23 fzsuc 11052 . . . . . . . . . . 11  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 0 ... ( 1  +  1 ) )  =  ( ( 0 ... 1 )  u.  {
( 1  +  1 ) } ) )
2411, 23ax-mp 8 . . . . . . . . . 10  |-  ( 0 ... ( 1  +  1 ) )  =  ( ( 0 ... 1 )  u.  {
( 1  +  1 ) } )
2521, 22, 243eqtr4ri 2435 . . . . . . . . 9  |-  ( 0 ... ( 1  +  1 ) )  =  { 0 ,  1 ,  2 }
2625eleq2i 2468 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 1  +  1 ) )  <->  k  e.  { 0 ,  1 ,  2 } )
27 vex 2919 . . . . . . . . 9  |-  k  e. 
_V
2827eltp 3813 . . . . . . . 8  |-  ( k  e.  { 0 ,  1 ,  2 }  <-> 
( k  =  0  \/  k  =  1  \/  k  =  2 ) )
2926, 28bitri 241 . . . . . . 7  |-  ( k  e.  ( 0 ... ( 1  +  1 ) )  <->  ( k  =  0  \/  k  =  1  \/  k  =  2 ) )
30 oveq2 6048 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
3  _C  k )  =  ( 3  _C  0 ) )
31 bcn0 11556 . . . . . . . . . . . . 13  |-  ( 3  e.  NN0  ->  ( 3  _C  0 )  =  1 )
321, 31ax-mp 8 . . . . . . . . . . . 12  |-  ( 3  _C  0 )  =  1
3330, 32syl6eq 2452 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
3  _C  k )  =  1 )
34 oveq1 6047 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
35 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  (
3  -  k )  =  ( 3  -  0 ) )
3635oveq1d 6055 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
( 3  -  k
)  +  1 )  =  ( ( 3  -  0 )  +  1 ) )
37 3cn 10028 . . . . . . . . . . . . . . . 16  |-  3  e.  CC
3837subid1i 9328 . . . . . . . . . . . . . . 15  |-  ( 3  -  0 )  =  3
3938oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( ( 3  -  0 )  +  1 )  =  ( 3  +  1 )
40 df-4 10016 . . . . . . . . . . . . . 14  |-  4  =  ( 3  +  1 )
4139, 40eqtr4i 2427 . . . . . . . . . . . . 13  |-  ( ( 3  -  0 )  +  1 )  =  4
4236, 41syl6eq 2452 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
( 3  -  k
)  +  1 )  =  4 )
4334, 42oveq12d 6058 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 3  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  4 ) )
4433, 43oveq12d 6058 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  4
) ) )
45 bpoly0 26000 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
4645oveq1d 6055 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  4 )  =  ( 1  /  4
) )
4746oveq2d 6056 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  4
) )  =  ( 1  x.  ( 1  /  4 ) ) )
48 4cn 10030 . . . . . . . . . . . . 13  |-  4  e.  CC
49 4re 10029 . . . . . . . . . . . . . 14  |-  4  e.  RR
50 4pos 10042 . . . . . . . . . . . . . 14  |-  0  <  4
5149, 50gt0ne0ii 9519 . . . . . . . . . . . . 13  |-  4  =/=  0
5248, 51reccli 9700 . . . . . . . . . . . 12  |-  ( 1  /  4 )  e.  CC
5352mulid2i 9049 . . . . . . . . . . 11  |-  ( 1  x.  ( 1  / 
4 ) )  =  ( 1  /  4
)
5447, 53syl6eq 2452 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  4
) )  =  ( 1  /  4 ) )
5544, 54sylan9eqr 2458 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( 1  /  4 ) )
5655, 52syl6eqel 2492 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  e.  CC )
57 oveq2 6048 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
3  _C  k )  =  ( 3  _C  1 ) )
58 bcn1 11559 . . . . . . . . . . . . 13  |-  ( 3  e.  NN0  ->  ( 3  _C  1 )  =  3 )
591, 58ax-mp 8 . . . . . . . . . . . 12  |-  ( 3  _C  1 )  =  3
6057, 59syl6eq 2452 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
3  _C  k )  =  3 )
61 oveq1 6047 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
62 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
3  -  k )  =  ( 3  -  1 ) )
6362oveq1d 6055 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( 3  -  k
)  +  1 )  =  ( ( 3  -  1 )  +  1 ) )
64 ax-1cn 9004 . . . . . . . . . . . . . 14  |-  1  e.  CC
65 npcan 9270 . . . . . . . . . . . . . 14  |-  ( ( 3  e.  CC  /\  1  e.  CC )  ->  ( ( 3  -  1 )  +  1 )  =  3 )
6637, 64, 65mp2an 654 . . . . . . . . . . . . 13  |-  ( ( 3  -  1 )  +  1 )  =  3
6763, 66syl6eq 2452 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
( 3  -  k
)  +  1 )  =  3 )
6861, 67oveq12d 6058 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 3  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  3 ) )
6960, 68oveq12d 6058 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  =  ( 3  x.  ( ( 1 BernPoly  X )  /  3
) ) )
70 bpoly1 26001 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
7170oveq1d 6055 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1 BernPoly  X )  /  3 )  =  ( ( X  -  ( 1  /  2
) )  /  3
) )
7271oveq2d 6056 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
3  x.  ( ( 1 BernPoly  X )  /  3
) )  =  ( 3  x.  ( ( X  -  ( 1  /  2 ) )  /  3 ) ) )
73 halfcl 10149 . . . . . . . . . . . . . 14  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
7464, 73ax-mp 8 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  CC
75 subcl 9261 . . . . . . . . . . . . 13  |-  ( ( X  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
7674, 75mpan2 653 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
77 3ne0 10041 . . . . . . . . . . . . 13  |-  3  =/=  0
78 divcan2 9642 . . . . . . . . . . . . 13  |-  ( ( ( X  -  (
1  /  2 ) )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
3  x.  ( ( X  -  ( 1  /  2 ) )  /  3 ) )  =  ( X  -  ( 1  /  2
) ) )
7937, 77, 78mp3an23 1271 . . . . . . . . . . . 12  |-  ( ( X  -  ( 1  /  2 ) )  e.  CC  ->  (
3  x.  ( ( X  -  ( 1  /  2 ) )  /  3 ) )  =  ( X  -  ( 1  /  2
) ) )
8076, 79syl 16 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
3  x.  ( ( X  -  ( 1  /  2 ) )  /  3 ) )  =  ( X  -  ( 1  /  2
) ) )
8172, 80eqtrd 2436 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  x.  ( ( 1 BernPoly  X )  /  3
) )  =  ( X  -  ( 1  /  2 ) ) )
8269, 81sylan9eqr 2458 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  1 )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
2 ) ) )
8376adantr 452 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  1 )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
8482, 83eqeltrd 2478 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  =  1 )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  e.  CC )
85 oveq2 6048 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
3  _C  k )  =  ( 3  _C  2 ) )
86 bcn2 11565 . . . . . . . . . . . . . 14  |-  ( 3  e.  NN0  ->  ( 3  _C  2 )  =  ( ( 3  x.  ( 3  -  1 ) )  /  2
) )
871, 86ax-mp 8 . . . . . . . . . . . . 13  |-  ( 3  _C  2 )  =  ( ( 3  x.  ( 3  -  1 ) )  /  2
)
884oveq2i 6051 . . . . . . . . . . . . . . 15  |-  ( 3  x.  ( 3  -  1 ) )  =  ( 3  x.  2 )
8988oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( ( 3  x.  ( 3  -  1 ) )  /  2 )  =  ( ( 3  x.  2 )  /  2
)
90 2cn 10026 . . . . . . . . . . . . . . 15  |-  2  e.  CC
91 2ne0 10039 . . . . . . . . . . . . . . 15  |-  2  =/=  0
9237, 90, 91divcan4i 9717 . . . . . . . . . . . . . 14  |-  ( ( 3  x.  2 )  /  2 )  =  3
9389, 92eqtri 2424 . . . . . . . . . . . . 13  |-  ( ( 3  x.  ( 3  -  1 ) )  /  2 )  =  3
9487, 93eqtri 2424 . . . . . . . . . . . 12  |-  ( 3  _C  2 )  =  3
9585, 94syl6eq 2452 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
3  _C  k )  =  3 )
96 oveq1 6047 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
k BernPoly  X )  =  ( 2 BernPoly  X ) )
97 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( k  =  2  ->  (
3  -  k )  =  ( 3  -  2 ) )
9897oveq1d 6055 . . . . . . . . . . . . 13  |-  ( k  =  2  ->  (
( 3  -  k
)  +  1 )  =  ( ( 3  -  2 )  +  1 ) )
99 2p1e3 10059 . . . . . . . . . . . . . . . 16  |-  ( 2  +  1 )  =  3
10037, 90, 64, 99subaddrii 9345 . . . . . . . . . . . . . . 15  |-  ( 3  -  2 )  =  1
101100oveq1i 6050 . . . . . . . . . . . . . 14  |-  ( ( 3  -  2 )  +  1 )  =  ( 1  +  1 )
102101, 5eqtr4i 2427 . . . . . . . . . . . . 13  |-  ( ( 3  -  2 )  +  1 )  =  2
10398, 102syl6eq 2452 . . . . . . . . . . . 12  |-  ( k  =  2  ->  (
( 3  -  k
)  +  1 )  =  2 )
10496, 103oveq12d 6058 . . . . . . . . . . 11  |-  ( k  =  2  ->  (
( k BernPoly  X )  /  ( ( 3  -  k )  +  1 ) )  =  ( ( 2 BernPoly  X
)  /  2 ) )
10595, 104oveq12d 6058 . . . . . . . . . 10  |-  ( k  =  2  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  =  ( 3  x.  ( ( 2 BernPoly  X )  /  2
) ) )
106 2nn0 10194 . . . . . . . . . . . . 13  |-  2  e.  NN0
107 bpolycl 26002 . . . . . . . . . . . . 13  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  e.  CC )
108106, 107mpan 652 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  e.  CC )
10990, 91pm3.2i 442 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2  =/=  0 )
110 div12 9656 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  ( 2 BernPoly  X )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( 3  x.  (
( 2 BernPoly  X )  /  2 ) )  =  ( ( 2 BernPoly  X )  x.  (
3  /  2 ) ) )
11137, 109, 110mp3an13 1270 . . . . . . . . . . . 12  |-  ( ( 2 BernPoly  X )  e.  CC  ->  ( 3  x.  (
( 2 BernPoly  X )  /  2 ) )  =  ( ( 2 BernPoly  X )  x.  (
3  /  2 ) ) )
112108, 111syl 16 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
3  x.  ( ( 2 BernPoly  X )  /  2
) )  =  ( ( 2 BernPoly  X )  x.  ( 3  / 
2 ) ) )
11337, 90, 91divcli 9712 . . . . . . . . . . . 12  |-  ( 3  /  2 )  e.  CC
114 mulcom 9032 . . . . . . . . . . . 12  |-  ( ( ( 2 BernPoly  X )  e.  CC  /\  (
3  /  2 )  e.  CC )  -> 
( ( 2 BernPoly  X
)  x.  ( 3  /  2 ) )  =  ( ( 3  /  2 )  x.  ( 2 BernPoly  X ) ) )
115108, 113, 114sylancl 644 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 2 BernPoly  X )  x.  ( 3  /  2
) )  =  ( ( 3  /  2
)  x.  ( 2 BernPoly  X ) ) )
116 bpoly2 26007 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
117116oveq2d 6056 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( 2 BernPoly  X ) )  =  ( ( 3  / 
2 )  x.  (
( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) ) )
118 sqcl 11399 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
119 id 20 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  X  e.  CC )
120 6re 10032 . . . . . . . . . . . . . . . . 17  |-  6  e.  RR
121120recni 9058 . . . . . . . . . . . . . . . 16  |-  6  e.  CC
122 6pos 10044 . . . . . . . . . . . . . . . . 17  |-  0  <  6
123120, 122gt0ne0ii 9519 . . . . . . . . . . . . . . . 16  |-  6  =/=  0
124121, 123reccli 9700 . . . . . . . . . . . . . . 15  |-  ( 1  /  6 )  e.  CC
125 subsub 9287 . . . . . . . . . . . . . . 15  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC  /\  (
1  /  6 )  e.  CC )  -> 
( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
126124, 125mp3an3 1268 . . . . . . . . . . . . . 14  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC )  ->  ( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
127118, 119, 126syl2anc 643 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) )
128127oveq2d 6056 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( ( X ^ 2 )  -  ( X  -  ( 1  /  6
) ) ) )  =  ( ( 3  /  2 )  x.  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6 ) ) ) )
129 subcl 9261 . . . . . . . . . . . . . 14  |-  ( ( X  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( X  -  ( 1  /  6
) )  e.  CC )
130124, 129mpan2 653 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  6 ) )  e.  CC )
131 subdi 9423 . . . . . . . . . . . . . 14  |-  ( ( ( 3  /  2
)  e.  CC  /\  ( X ^ 2 )  e.  CC  /\  ( X  -  ( 1  /  6 ) )  e.  CC )  -> 
( ( 3  / 
2 )  x.  (
( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) ) )  =  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )
132113, 131mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( ( X ^ 2 )  e.  CC  /\  ( X  -  (
1  /  6 ) )  e.  CC )  ->  ( ( 3  /  2 )  x.  ( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) ) )  =  ( ( ( 3  / 
2 )  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )
133118, 130, 132syl2anc 643 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( ( X ^ 2 )  -  ( X  -  ( 1  /  6
) ) ) )  =  ( ( ( 3  /  2 )  x.  ( X ^
2 ) )  -  ( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) ) ) )
134117, 128, 1333eqtr2d 2442 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( 2 BernPoly  X ) )  =  ( ( ( 3  /  2 )  x.  ( X ^ 2 ) )  -  (
( 3  /  2
)  x.  ( X  -  ( 1  / 
6 ) ) ) ) )
135112, 115, 1343eqtrd 2440 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
3  x.  ( ( 2 BernPoly  X )  /  2
) )  =  ( ( ( 3  / 
2 )  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )
136105, 135sylan9eqr 2458 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  2 )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )
137 mulcl 9030 . . . . . . . . . . . 12  |-  ( ( ( 3  /  2
)  e.  CC  /\  ( X ^ 2 )  e.  CC )  -> 
( ( 3  / 
2 )  x.  ( X ^ 2 ) )  e.  CC )
138113, 118, 137sylancr 645 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( X ^ 2 ) )  e.  CC )
139 mulcl 9030 . . . . . . . . . . . 12  |-  ( ( ( 3  /  2
)  e.  CC  /\  ( X  -  (
1  /  6 ) )  e.  CC )  ->  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) )  e.  CC )
140113, 130, 139sylancr 645 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( X  -  ( 1  / 
6 ) ) )  e.  CC )
141138, 140subcld 9367 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) )  e.  CC )
142141adantr 452 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  2 )  ->  ( ( ( 3  /  2 )  x.  ( X ^
2 ) )  -  ( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) ) )  e.  CC )
143136, 142eqeltrd 2478 . . . . . . . 8  |-  ( ( X  e.  CC  /\  k  =  2 )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  e.  CC )
14456, 84, 1433jaodan 1250 . . . . . . 7  |-  ( ( X  e.  CC  /\  ( k  =  0  \/  k  =  1  \/  k  =  2 ) )  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  e.  CC )
14529, 144sylan2b 462 . . . . . 6  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 1  +  1 ) ) )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  e.  CC )
1465eqeq2i 2414 . . . . . . 7  |-  ( k  =  2  <->  k  =  ( 1  +  1 ) )
147146, 105sylbir 205 . . . . . 6  |-  ( k  =  ( 1  +  1 )  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  =  ( 3  x.  ( ( 2 BernPoly  X )  /  2
) ) )
14812, 145, 147fsump1 12495 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 1 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( 3  x.  ( ( 2 BernPoly  X )  /  2
) ) ) )
149135oveq2d 6056 . . . . 5  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( 3  x.  ( ( 2 BernPoly  X )  /  2
) ) )  =  ( sum_ k  e.  ( 0 ... 1 ) ( ( 3  _C  k )  x.  (
( k BernPoly  X )  /  ( ( 3  -  k )  +  1 ) ) )  +  ( ( ( 3  /  2 )  x.  ( X ^
2 ) )  -  ( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) ) ) ) )
15017sumeq1i 12447 . . . . . . . . 9  |-  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... 1
) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )
151 0nn0 10192 . . . . . . . . . . . . 13  |-  0  e.  NN0
152151, 10eleqtri 2476 . . . . . . . . . . . 12  |-  0  e.  ( ZZ>= `  0 )
153152a1i 11 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
15415, 18eqtri 2424 . . . . . . . . . . . . . 14  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  1 }
155154eleq2i 2468 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  k  e.  { 0 ,  1 } )
15627elpr 3792 . . . . . . . . . . . . 13  |-  ( k  e.  { 0 ,  1 }  <->  ( k  =  0  \/  k  =  1 ) )
157155, 156bitri 241 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  ( k  =  0  \/  k  =  1 ) )
15856, 84jaodan 761 . . . . . . . . . . . 12  |-  ( ( X  e.  CC  /\  ( k  =  0  \/  k  =  1 ) )  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  e.  CC )
159157, 158sylan2b 462 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  e.  CC )
16016eqeq2i 2414 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
161160, 69sylbi 188 . . . . . . . . . . 11  |-  ( k  =  ( 0  +  1 )  ->  (
( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  =  ( 3  x.  ( ( 1 BernPoly  X )  /  3
) ) )
162153, 159, 161fsump1 12495 . . . . . . . . . 10  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( 3  x.  ( ( 1 BernPoly  X )  /  3
) ) ) )
16354, 52syl6eqel 2492 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  4
) )  e.  CC )
16444fsum1 12490 . . . . . . . . . . . . 13  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  4 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  4
) ) )
16513, 163, 164sylancr 645 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  4
) ) )
166165, 54eqtrd 2436 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( 1  /  4 ) )
167166, 81oveq12d 6058 . . . . . . . . . 10  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( 3  x.  ( ( 1 BernPoly  X )  /  3
) ) )  =  ( ( 1  / 
4 )  +  ( X  -  ( 1  /  2 ) ) ) )
168162, 167eqtrd 2436 . . . . . . . . 9  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) ) )
169150, 168syl5eqr 2450 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 1
) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) ) )
170169oveq1d 6055 . . . . . . 7  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( ( ( 3  / 
2 )  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )  =  ( ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) )  +  ( ( ( 3  /  2 )  x.  ( X ^ 2 ) )  -  (
( 3  /  2
)  x.  ( X  -  ( 1  / 
6 ) ) ) ) ) )
171 addcl 9028 . . . . . . . . 9  |-  ( ( ( 1  /  4
)  e.  CC  /\  ( X  -  (
1  /  2 ) )  e.  CC )  ->  ( ( 1  /  4 )  +  ( X  -  (
1  /  2 ) ) )  e.  CC )
17252, 76, 171sylancr 645 . . . . . . . 8  |-  ( X  e.  CC  ->  (
( 1  /  4
)  +  ( X  -  ( 1  / 
2 ) ) )  e.  CC )
173172, 138, 140addsub12d 9390 . . . . . . 7  |-  ( X  e.  CC  ->  (
( ( 1  / 
4 )  +  ( X  -  ( 1  /  2 ) ) )  +  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )  =  ( ( ( 3  /  2 )  x.  ( X ^
2 ) )  +  ( ( ( 1  /  4 )  +  ( X  -  (
1  /  2 ) ) )  -  (
( 3  /  2
)  x.  ( X  -  ( 1  / 
6 ) ) ) ) ) )
174170, 173eqtrd 2436 . . . . . 6  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( ( ( 3  / 
2 )  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )  =  ( ( ( 3  /  2 )  x.  ( X ^
2 ) )  +  ( ( ( 1  /  4 )  +  ( X  -  (
1  /  2 ) ) )  -  (
( 3  /  2
)  x.  ( X  -  ( 1  / 
6 ) ) ) ) ) )
175140, 172negsubdi2d 9383 . . . . . . . 8  |-  ( X  e.  CC  ->  -u (
( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) )  -  ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) ) )  =  ( ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) )  -  ( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) ) ) )
176 subdi 9423 . . . . . . . . . . . 12  |-  ( ( ( 3  /  2
)  e.  CC  /\  X  e.  CC  /\  (
1  /  6 )  e.  CC )  -> 
( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( 3  /  2
)  x.  X )  -  ( ( 3  /  2 )  x.  ( 1  /  6
) ) ) )
177113, 124, 176mp3an13 1270 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  ( X  -  ( 1  / 
6 ) ) )  =  ( ( ( 3  /  2 )  x.  X )  -  ( ( 3  / 
2 )  x.  (
1  /  6 ) ) ) )
178 addsub12 9274 . . . . . . . . . . . 12  |-  ( ( ( 1  /  4
)  e.  CC  /\  X  e.  CC  /\  (
1  /  2 )  e.  CC )  -> 
( ( 1  / 
4 )  +  ( X  -  ( 1  /  2 ) ) )  =  ( X  +  ( ( 1  /  4 )  -  ( 1  /  2
) ) ) )
17952, 74, 178mp3an13 1270 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( 1  /  4
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  ( ( 1  / 
4 )  -  (
1  /  2 ) ) ) )
180177, 179oveq12d 6058 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) )  -  ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) ) )  =  ( ( ( ( 3  /  2
)  x.  X )  -  ( ( 3  /  2 )  x.  ( 1  /  6
) ) )  -  ( X  +  (
( 1  /  4
)  -  ( 1  /  2 ) ) ) ) )
181 mulcl 9030 . . . . . . . . . . . . 13  |-  ( ( ( 3  /  2
)  e.  CC  /\  X  e.  CC )  ->  ( ( 3  / 
2 )  x.  X
)  e.  CC )
182113, 181mpan 652 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 3  /  2
)  x.  X )  e.  CC )
183113, 124mulcli 9051 . . . . . . . . . . . 12  |-  ( ( 3  /  2 )  x.  ( 1  / 
6 ) )  e.  CC
184 negsub 9305 . . . . . . . . . . . 12  |-  ( ( ( ( 3  / 
2 )  x.  X
)  e.  CC  /\  ( ( 3  / 
2 )  x.  (
1  /  6 ) )  e.  CC )  ->  ( ( ( 3  /  2 )  x.  X )  + 
-u ( ( 3  /  2 )  x.  ( 1  /  6
) ) )  =  ( ( ( 3  /  2 )  x.  X )  -  (
( 3  /  2
)  x.  ( 1  /  6 ) ) ) )
185182, 183, 184sylancl 644 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  X
)  +  -u (
( 3  /  2
)  x.  ( 1  /  6 ) ) )  =  ( ( ( 3  /  2
)  x.  X )  -  ( ( 3  /  2 )  x.  ( 1  /  6
) ) ) )
186185oveq1d 6055 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( ( 3  /  2 )  x.  X )  +  -u ( ( 3  / 
2 )  x.  (
1  /  6 ) ) )  -  ( X  +  ( (
1  /  4 )  -  ( 1  / 
2 ) ) ) )  =  ( ( ( ( 3  / 
2 )  x.  X
)  -  ( ( 3  /  2 )  x.  ( 1  / 
6 ) ) )  -  ( X  +  ( ( 1  / 
4 )  -  (
1  /  2 ) ) ) ) )
18774, 52negsubdi2i 9342 . . . . . . . . . . . . . 14  |-  -u (
( 1  /  2
)  -  ( 1  /  4 ) )  =  ( ( 1  /  4 )  -  ( 1  /  2
) )
18890, 37, 90mul12i 9217 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  x.  ( 3  x.  2 ) )  =  ( 3  x.  (
2  x.  2 ) )
189 3t2e6 10084 . . . . . . . . . . . . . . . . . . . 20  |-  ( 3  x.  2 )  =  6
190189oveq2i 6051 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  x.  ( 3  x.  2 ) )  =  ( 2  x.  6 )
191 2t2e4 10083 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  2 )  =  4
192191oveq2i 6051 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  x.  ( 2  x.  2 ) )  =  ( 3  x.  4 )
193188, 190, 1923eqtr3i 2432 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  6 )  =  ( 3  x.  4 )
194193oveq2i 6051 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  x.  1 )  /  ( 2  x.  6 ) )  =  ( ( 3  x.  1 )  /  (
3  x.  4 ) )
19548, 51pm3.2i 442 . . . . . . . . . . . . . . . . . 18  |-  ( 4  e.  CC  /\  4  =/=  0 )
19637, 77pm3.2i 442 . . . . . . . . . . . . . . . . . 18  |-  ( 3  e.  CC  /\  3  =/=  0 )
197 divcan5 9672 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  ( 4  e.  CC  /\  4  =/=  0 )  /\  ( 3  e.  CC  /\  3  =/=  0 ) )  -> 
( ( 3  x.  1 )  /  (
3  x.  4 ) )  =  ( 1  /  4 ) )
19864, 195, 196, 197mp3an 1279 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  x.  1 )  /  ( 3  x.  4 ) )  =  ( 1  /  4
)
199194, 198eqtri 2424 . . . . . . . . . . . . . . . 16  |-  ( ( 3  x.  1 )  /  ( 2  x.  6 ) )  =  ( 1  /  4
)
20037, 90, 64, 121, 91, 123divmuldivi 9730 . . . . . . . . . . . . . . . 16  |-  ( ( 3  /  2 )  x.  ( 1  / 
6 ) )  =  ( ( 3  x.  1 )  /  (
2  x.  6 ) )
20190mulid1i 9048 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  1 )  =  2
202201, 5eqtri 2424 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  x.  1 )  =  ( 1  +  1 )
203202, 191oveq12i 6052 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( ( 1  +  1 )  /  4
)
204 divcan5 9672 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  1 )  /  (
2  x.  2 ) )  =  ( 1  /  2 ) )
20564, 109, 109, 204mp3an 1279 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 1  /  2
)
20664, 64, 48, 51divdiri 9727 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  +  1 )  /  4 )  =  ( ( 1  / 
4 )  +  ( 1  /  4 ) )
207203, 205, 2063eqtr3ri 2433 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  /  2
)
20874, 52, 52, 207subaddrii 9345 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  2 )  -  ( 1  / 
4 ) )  =  ( 1  /  4
)
209199, 200, 2083eqtr4ri 2435 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  2 )  -  ( 1  / 
4 ) )  =  ( ( 3  / 
2 )  x.  (
1  /  6 ) )
210209negeqi 9255 . . . . . . . . . . . . . 14  |-  -u (
( 1  /  2
)  -  ( 1  /  4 ) )  =  -u ( ( 3  /  2 )  x.  ( 1  /  6
) )
211187, 210eqtr3i 2426 . . . . . . . . . . . . 13  |-  ( ( 1  /  4 )  -  ( 1  / 
2 ) )  = 
-u ( ( 3  /  2 )  x.  ( 1  /  6
) )
21252, 74subcli 9332 . . . . . . . . . . . . . 14  |-  ( ( 1  /  4 )  -  ( 1  / 
2 ) )  e.  CC
213183negcli 9324 . . . . . . . . . . . . . 14  |-  -u (
( 3  /  2
)  x.  ( 1  /  6 ) )  e.  CC
214212, 213subeq0i 9336 . . . . . . . . . . . . 13  |-  ( ( ( ( 1  / 
4 )  -  (
1  /  2 ) )  -  -u (
( 3  /  2
)  x.  ( 1  /  6 ) ) )  =  0  <->  (
( 1  /  4
)  -  ( 1  /  2 ) )  =  -u ( ( 3  /  2 )  x.  ( 1  /  6
) ) )
215211, 214mpbir 201 . . . . . . . . . . . 12  |-  ( ( ( 1  /  4
)  -  ( 1  /  2 ) )  -  -u ( ( 3  /  2 )  x.  ( 1  /  6
) ) )  =  0
216215oveq2i 6051 . . . . . . . . . . 11  |-  ( ( ( ( 3  / 
2 )  x.  X
)  -  X )  -  ( ( ( 1  /  4 )  -  ( 1  / 
2 ) )  -  -u ( ( 3  / 
2 )  x.  (
1  /  6 ) ) ) )  =  ( ( ( ( 3  /  2 )  x.  X )  -  X )  -  0 )
217212a1i 11 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( 1  /  4
)  -  ( 1  /  2 ) )  e.  CC )
218213a1i 11 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  -u (
( 3  /  2
)  x.  ( 1  /  6 ) )  e.  CC )
219182, 119, 217, 218subadd4d 9415 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( ( 3  /  2 )  x.  X )  -  X
)  -  ( ( ( 1  /  4
)  -  ( 1  /  2 ) )  -  -u ( ( 3  /  2 )  x.  ( 1  /  6
) ) ) )  =  ( ( ( ( 3  /  2
)  x.  X )  +  -u ( ( 3  /  2 )  x.  ( 1  /  6
) ) )  -  ( X  +  (
( 1  /  4
)  -  ( 1  /  2 ) ) ) ) )
220 subdir 9424 . . . . . . . . . . . . . . 15  |-  ( ( ( 3  /  2
)  e.  CC  /\  1  e.  CC  /\  X  e.  CC )  ->  (
( ( 3  / 
2 )  -  1 )  x.  X )  =  ( ( ( 3  /  2 )  x.  X )  -  ( 1  x.  X
) ) )
221113, 64, 220mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  -  1 )  x.  X )  =  ( ( ( 3  /  2 )  x.  X )  -  ( 1  x.  X
) ) )
222 divsubdir 9666 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  CC  /\  2  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( 3  -  2 )  / 
2 )  =  ( ( 3  /  2
)  -  ( 2  /  2 ) ) )
22337, 90, 109, 222mp3an 1279 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  -  2 )  /  2 )  =  ( ( 3  / 
2 )  -  (
2  /  2 ) )
224100oveq1i 6050 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  -  2 )  /  2 )  =  ( 1  /  2
)
22590, 91dividi 9703 . . . . . . . . . . . . . . . . . 18  |-  ( 2  /  2 )  =  1
226225oveq2i 6051 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  /  2 )  -  ( 2  / 
2 ) )  =  ( ( 3  / 
2 )  -  1 )
227223, 224, 2263eqtr3ri 2433 . . . . . . . . . . . . . . . 16  |-  ( ( 3  /  2 )  -  1 )  =  ( 1  /  2
)
228227oveq1i 6050 . . . . . . . . . . . . . . 15  |-  ( ( ( 3  /  2
)  -  1 )  x.  X )  =  ( ( 1  / 
2 )  x.  X
)
229228a1i 11 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  -  1 )  x.  X )  =  ( ( 1  /  2 )  x.  X ) )
230 mulid2 9045 . . . . . . . . . . . . . . 15  |-  ( X  e.  CC  ->  (
1  x.  X )  =  X )
231230oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  X
)  -  ( 1  x.  X ) )  =  ( ( ( 3  /  2 )  x.  X )  -  X ) )
232221, 229, 2313eqtr3rd 2445 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  X
)  -  X )  =  ( ( 1  /  2 )  x.  X ) )
233232oveq1d 6055 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( ( ( 3  /  2 )  x.  X )  -  X
)  -  0 )  =  ( ( ( 1  /  2 )  x.  X )  - 
0 ) )
234 mulcl 9030 . . . . . . . . . . . . . 14  |-  ( ( ( 1  /  2
)  e.  CC  /\  X  e.  CC )  ->  ( ( 1  / 
2 )  x.  X
)  e.  CC )
23574, 234mpan 652 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1  /  2
)  x.  X )  e.  CC )
236235subid1d 9356 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
( ( 1  / 
2 )  x.  X
)  -  0 )  =  ( ( 1  /  2 )  x.  X ) )
237233, 236eqtrd 2436 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
( ( ( 3  /  2 )  x.  X )  -  X
)  -  0 )  =  ( ( 1  /  2 )  x.  X ) )
238216, 219, 2373eqtr3a 2460 . . . . . . . . . 10  |-  ( X  e.  CC  ->  (
( ( ( 3  /  2 )  x.  X )  +  -u ( ( 3  / 
2 )  x.  (
1  /  6 ) ) )  -  ( X  +  ( (
1  /  4 )  -  ( 1  / 
2 ) ) ) )  =  ( ( 1  /  2 )  x.  X ) )
239180, 186, 2383eqtr2d 2442 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) )  -  ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) ) )  =  ( ( 1  /  2 )  x.  X ) )
240239negeqd 9256 . . . . . . . 8  |-  ( X  e.  CC  ->  -u (
( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) )  -  ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) ) )  =  -u ( ( 1  /  2 )  x.  X ) )
241175, 240eqtr3d 2438 . . . . . . 7  |-  ( X  e.  CC  ->  (
( ( 1  / 
4 )  +  ( X  -  ( 1  /  2 ) ) )  -  ( ( 3  /  2 )  x.  ( X  -  ( 1  /  6
) ) ) )  =  -u ( ( 1  /  2 )  x.  X ) )
242241oveq2d 6056 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  ( X ^ 2 ) )  +  ( ( ( 1  /  4 )  +  ( X  -  ( 1  /  2
) ) )  -  ( ( 3  / 
2 )  x.  ( X  -  ( 1  /  6 ) ) ) ) )  =  ( ( ( 3  /  2 )  x.  ( X ^ 2 ) )  +  -u ( ( 1  / 
2 )  x.  X
) ) )
243138, 235negsubd 9373 . . . . . 6  |-  ( X  e.  CC  ->  (
( ( 3  / 
2 )  x.  ( X ^ 2 ) )  +  -u ( ( 1  /  2 )  x.  X ) )  =  ( ( ( 3  /  2 )  x.  ( X ^ 2 ) )  -  (
( 1  /  2
)  x.  X ) ) )
244174, 242, 2433eqtrd 2440 . . . . 5  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 1 ) ( ( 3  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 3  -  k
)  +  1 ) ) )  +  ( ( ( 3  / 
2 )  x.  ( X ^ 2 ) )  -  ( ( 3  /  2 )  x.  ( X  -  (
1  /  6 ) ) ) ) )  =  ( ( ( 3  /  2 )  x.  ( X ^
2 ) )  -  ( ( 1  / 
2 )  x.  X
) ) )
245148, 149, 2443eqtrd 2440 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
1  +  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 1  /  2 )  x.  X ) ) )
2468, 245syl5eq 2448 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
3  -  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) )  =  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 1  /  2 )  x.  X ) ) )
247246oveq2d 6056 . 2  |-  ( X  e.  CC  ->  (
( X ^ 3 )  -  sum_ k  e.  ( 0 ... (
3  -  1 ) ) ( ( 3  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 3  -  k )  +  1 ) ) ) )  =  ( ( X ^ 3 )  -  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 1  /  2 )  x.  X ) ) ) )
248 expcl 11354 . . . 4  |-  ( ( X  e.  CC  /\  3  e.  NN0 )  -> 
( X ^ 3 )  e.  CC )
2491, 248mpan2 653 . . 3  |-  ( X  e.  CC  ->  ( X ^ 3 )  e.  CC )
250249, 138, 235subsubd 9395 . 2  |-  ( X  e.  CC  ->  (
( X ^ 3 )  -  ( ( ( 3  /  2
)  x.  ( X ^ 2 ) )  -  ( ( 1  /  2 )  x.  X ) ) )  =  ( ( ( X ^ 3 )  -  ( ( 3  /  2 )  x.  ( X ^ 2 ) ) )  +  ( ( 1  / 
2 )  x.  X
) ) )
2513, 247, 2503eqtrd 2440 1  |-  ( X  e.  CC  ->  (
3 BernPoly  X )  =  ( ( ( X ^
3 )  -  (
( 3  /  2
)  x.  ( X ^ 2 ) ) )  +  ( ( 1  /  2 )  x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1721    =/= wne 2567    u. cun 3278   {csn 3774   {cpr 3775   {ctp 3776   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   2c2 10005   3c3 10006   4c4 10007   6c6 10009   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   ^cexp 11337    _C cbc 11548   sum_csu 12434   BernPoly cbp 25996
This theorem is referenced by:  bpoly4  26009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-pred 25382  df-bpoly 25997
  Copyright terms: Public domain W3C validator