MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  boxriin Structured version   Unicode version

Theorem boxriin 7317
Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
boxriin  |-  ( A. x  e.  I  A  C_  B  ->  X_ x  e.  I  A  =  (
X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) )
Distinct variable groups:    y, A    y, B    x, I, y
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem boxriin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simprl 755 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  z  Fn  I
)
2 ssel 3362 . . . . . . . 8  |-  ( A 
C_  B  ->  (
( z `  x
)  e.  A  -> 
( z `  x
)  e.  B ) )
32ral2imi 2804 . . . . . . 7  |-  ( A. x  e.  I  A  C_  B  ->  ( A. x  e.  I  (
z `  x )  e.  A  ->  A. x  e.  I  ( z `  x )  e.  B
) )
43adantr 465 . . . . . 6  |-  ( ( A. x  e.  I  A  C_  B  /\  z  Fn  I )  ->  ( A. x  e.  I 
( z `  x
)  e.  A  ->  A. x  e.  I 
( z `  x
)  e.  B ) )
54impr 619 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  A. x  e.  I 
( z `  x
)  e.  B )
6 eleq2 2504 . . . . . . . . . . . 12  |-  ( A  =  if ( x  =  y ,  A ,  B )  ->  (
( z `  x
)  e.  A  <->  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
7 eleq2 2504 . . . . . . . . . . . 12  |-  ( B  =  if ( x  =  y ,  A ,  B )  ->  (
( z `  x
)  e.  B  <->  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
8 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( A  C_  B  /\  ( z `  x
)  e.  A )  /\  x  =  y )  ->  ( z `  x )  e.  A
)
9 ssel2 3363 . . . . . . . . . . . . 13  |-  ( ( A  C_  B  /\  ( z `  x
)  e.  A )  ->  ( z `  x )  e.  B
)
109adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  C_  B  /\  ( z `  x
)  e.  A )  /\  -.  x  =  y )  ->  (
z `  x )  e.  B )
116, 7, 8, 10ifbothda 3836 . . . . . . . . . . 11  |-  ( ( A  C_  B  /\  ( z `  x
)  e.  A )  ->  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )
1211ex 434 . . . . . . . . . 10  |-  ( A 
C_  B  ->  (
( z `  x
)  e.  A  -> 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
1312ral2imi 2804 . . . . . . . . 9  |-  ( A. x  e.  I  A  C_  B  ->  ( A. x  e.  I  (
z `  x )  e.  A  ->  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
1413adantr 465 . . . . . . . 8  |-  ( ( A. x  e.  I  A  C_  B  /\  z  Fn  I )  ->  ( A. x  e.  I 
( z `  x
)  e.  A  ->  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
1514impr 619 . . . . . . 7  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) )
161, 15jca 532 . . . . . 6  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
1716ralrimivw 2812 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  A. y  e.  I 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
181, 5, 17jca31 534 . . . 4  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  ( ( z  Fn  I  /\  A. x  e.  I  (
z `  x )  e.  B )  /\  A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )
19 simprll 761 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )  -> 
z  Fn  I )
20 simpr 461 . . . . . . . 8  |-  ( ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  ->  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) )
2120ralimi 2803 . . . . . . 7  |-  ( A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  ->  A. y  e.  I  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) )
22 ralcom 2893 . . . . . . . 8  |-  ( A. y  e.  I  A. x  e.  I  (
z `  x )  e.  if ( x  =  y ,  A ,  B )  <->  A. x  e.  I  A. y  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )
23 iftrue 3809 . . . . . . . . . . . 12  |-  ( x  =  y  ->  if ( x  =  y ,  A ,  B )  =  A )
2423equcoms 1733 . . . . . . . . . . 11  |-  ( y  =  x  ->  if ( x  =  y ,  A ,  B )  =  A )
2524eleq2d 2510 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( z `  x
)  e.  if ( x  =  y ,  A ,  B )  <-> 
( z `  x
)  e.  A ) )
2625rspcva 3083 . . . . . . . . 9  |-  ( ( x  e.  I  /\  A. y  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  -> 
( z `  x
)  e.  A )
2726ralimiaa 2802 . . . . . . . 8  |-  ( A. x  e.  I  A. y  e.  I  (
z `  x )  e.  if ( x  =  y ,  A ,  B )  ->  A. x  e.  I  ( z `  x )  e.  A
)
2822, 27sylbi 195 . . . . . . 7  |-  ( A. y  e.  I  A. x  e.  I  (
z `  x )  e.  if ( x  =  y ,  A ,  B )  ->  A. x  e.  I  ( z `  x )  e.  A
)
2921, 28syl 16 . . . . . 6  |-  ( A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  ->  A. x  e.  I 
( z `  x
)  e.  A )
3029ad2antll 728 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )  ->  A. x  e.  I 
( z `  x
)  e.  A )
3119, 30jca 532 . . . 4  |-  ( ( A. x  e.  I  A  C_  B  /\  (
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )  -> 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  A ) )
3218, 31impbida 828 . . 3  |-  ( A. x  e.  I  A  C_  B  ->  ( (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A )  <->  ( (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) ) )
33 vex 2987 . . . 4  |-  z  e. 
_V
3433elixp 7282 . . 3  |-  ( z  e.  X_ x  e.  I  A 
<->  ( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  A ) )
35 elin 3551 . . . 4  |-  ( z  e.  ( X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B ) )  <->  ( z  e.  X_ x  e.  I  B  /\  z  e.  |^|_ y  e.  I  X_ x  e.  I  if (
x  =  y ,  A ,  B ) ) )
3633elixp 7282 . . . . 5  |-  ( z  e.  X_ x  e.  I  B 
<->  ( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B ) )
37 eliin 4188 . . . . . . 7  |-  ( z  e.  _V  ->  (
z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B )  <->  A. y  e.  I  z  e.  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) )
3833, 37ax-mp 5 . . . . . 6  |-  ( z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  A. y  e.  I 
z  e.  X_ x  e.  I  if (
x  =  y ,  A ,  B ) )
3933elixp 7282 . . . . . . 7  |-  ( z  e.  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
4039ralbii 2751 . . . . . 6  |-  ( A. y  e.  I  z  e.  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  A. y  e.  I 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
4138, 40bitri 249 . . . . 5  |-  ( z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  A. y  e.  I 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
4236, 41anbi12i 697 . . . 4  |-  ( ( z  e.  X_ x  e.  I  B  /\  z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) )  <->  ( (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )
4335, 42bitri 249 . . 3  |-  ( z  e.  ( X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B ) )  <->  ( ( z  Fn  I  /\  A. x  e.  I  (
z `  x )  e.  B )  /\  A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )
4432, 34, 433bitr4g 288 . 2  |-  ( A. x  e.  I  A  C_  B  ->  ( z  e.  X_ x  e.  I  A 
<->  z  e.  ( X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) ) )
4544eqrdv 2441 1  |-  ( A. x  e.  I  A  C_  B  ->  X_ x  e.  I  A  =  (
X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   _Vcvv 2984    i^i cin 3339    C_ wss 3340   ifcif 3803   |^|_ciin 4184    Fn wfn 5425   ` cfv 5430   X_cixp 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iin 4186  df-br 4305  df-opab 4363  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-iota 5393  df-fun 5432  df-fn 5433  df-fv 5438  df-ixp 7276
This theorem is referenced by:  ptcld  19198  kelac1  29428
  Copyright terms: Public domain W3C validator