Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj998 Structured version   Unicode version

Theorem bnj998 29769
Description: Technical lemma for bnj69 29821. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj998.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj998.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj998.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj998.4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
bnj998.5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
bnj998.7  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj998.8  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj998.9  |-  ( ch'  <->  [. p  /  n ]. ch )
bnj998.10  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj998.11  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj998.12  |-  ( ch"  <->  [. G  / 
f ]. ch' )
bnj998.13  |-  D  =  ( om  \  { (/)
} )
bnj998.14  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj998.15  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj998.16  |-  G  =  ( f  u.  { <. n ,  C >. } )
Assertion
Ref Expression
bnj998  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch" )
Distinct variable groups:    A, f,
i, m, n, y    D, f, i, n    i, G    R, f, i, m, n, y    f, X, i, n    f, p, i, n    ph, i
Allowed substitution hints:    ph( y, z, f, m, n, p)    ps( y, z, f, i, m, n, p)    ch( y, z, f, i, m, n, p)    th( y,
z, f, i, m, n, p)    ta( y,
z, f, i, m, n, p)    et( y,
z, f, i, m, n, p)    A( z, p)    B( y, z, f, i, m, n, p)    C( y, z, f, i, m, n, p)    D( y, z, m, p)    R( z, p)    G( y, z, f, m, n, p)    X( y, z, m, p)    ph'( y, z, f, i, m, n, p)    ps'( y, z, f, i, m, n, p)    ch'( y, z, f, i, m, n, p)    ph"( y, z, f, i, m, n, p)    ps"( y, z, f, i, m, n, p)    ch"( y, z, f, i, m, n, p)

Proof of Theorem bnj998
StepHypRef Expression
1 bnj998.4 . . . . . 6  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
2 bnj253 29511 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  y  e.  trCl ( X ,  A ,  R )  /\  z  e.  pred ( y ,  A ,  R ) ) )
32simp1bi 1021 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) )  -> 
( R  FrSe  A  /\  X  e.  A
) )
41, 3sylbi 199 . . . . 5  |-  ( th 
->  ( R  FrSe  A  /\  X  e.  A
) )
54bnj705 29565 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( R  FrSe  A  /\  X  e.  A
) )
6 bnj643 29561 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch )
7 bnj998.5 . . . . . 6  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
8 3simpc 1005 . . . . . 6  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n )  ->  ( n  =  suc  m  /\  p  =  suc  n ) )
97, 8sylbi 199 . . . . 5  |-  ( ta 
->  ( n  =  suc  m  /\  p  =  suc  n ) )
109bnj707 29567 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( n  =  suc  m  /\  p  =  suc  n ) )
11 bnj255 29512 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ch  /\  n  =  suc  m  /\  p  =  suc  n )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ch  /\  ( n  =  suc  m  /\  p  =  suc  n ) ) )
125, 6, 10, 11syl3anbrc 1190 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ( R  FrSe  A  /\  X  e.  A
)  /\  ch  /\  n  =  suc  m  /\  p  =  suc  n ) )
13 bnj252 29510 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ch  /\  n  =  suc  m  /\  p  =  suc  n )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) ) )
1412, 13sylib 200 . 2  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) ) )
15 bnj998.1 . . 3  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
16 bnj998.2 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
17 bnj998.3 . . 3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
18 bnj998.7 . . 3  |-  ( ph'  <->  [. p  /  n ]. ph )
19 bnj998.8 . . 3  |-  ( ps'  <->  [. p  /  n ]. ps )
20 bnj998.9 . . 3  |-  ( ch'  <->  [. p  /  n ]. ch )
21 bnj998.10 . . 3  |-  ( ph"  <->  [. G  / 
f ]. ph' )
22 bnj998.11 . . 3  |-  ( ps"  <->  [. G  / 
f ]. ps' )
23 bnj998.12 . . 3  |-  ( ch"  <->  [. G  / 
f ]. ch' )
24 bnj998.13 . . 3  |-  D  =  ( om  \  { (/)
} )
25 bnj998.14 . . 3  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
26 bnj998.15 . . 3  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
27 bnj998.16 . . 3  |-  G  =  ( f  u.  { <. n ,  C >. } )
28 biid 240 . . 3  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  <->  ( f  Fn  n  /\  ph  /\  ps ) )
29 biid 240 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
3015, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29bnj910 29761 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ch" )
3114, 30syl 17 1  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   {cab 2408   A.wral 2776   E.wrex 2777   [.wsbc 3300    \ cdif 3434    u. cun 3435   (/)c0 3762   {csn 3997   <.cop 4003   U_ciun 4297   suc csuc 5442    Fn wfn 5594   ` cfv 5599   omcom 6704    /\ w-bnj17 29493    predc-bnj14 29495    FrSe w-bnj15 29499    trClc-bnj18 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pr 4658  ax-un 6595  ax-reg 8111
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-om 6705  df-bnj17 29494  df-bnj14 29496  df-bnj13 29498  df-bnj15 29500
This theorem is referenced by:  bnj1020  29776
  Copyright terms: Public domain W3C validator