Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj996 Structured version   Unicode version

Theorem bnj996 33101
Description: Technical lemma for bnj69 33154. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj996.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj996.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj996.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj996.4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
bnj996.5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
bnj996.6  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
bnj996.13  |-  D  =  ( om  \  { (/)
} )
bnj996.14  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj996  |-  E. f E. n E. i E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)
Distinct variable groups:    A, f,
i, n, y    D, i    R, f, i, n, y    f, X, i, n, y    ch, m, p    et, m, p    th, f,
i, n    ph, i    m, n, th, p
Allowed substitution hints:    ph( y, z, f, m, n, p)    ps( y, z, f, i, m, n, p)    ch( y, z, f, i, n)    th( y, z)    ta( y,
z, f, i, m, n, p)    et( y,
z, f, i, n)    A( z, m, p)    B( y, z, f, i, m, n, p)    D( y,
z, f, m, n, p)    R( z, m, p)    X( z, m, p)

Proof of Theorem bnj996
StepHypRef Expression
1 bnj996.4 . . . . 5  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
2 bnj996.1 . . . . . 6  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
3 bnj996.2 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 bnj996.13 . . . . . 6  |-  D  =  ( om  \  { (/)
} )
5 bnj996.14 . . . . . 6  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
6 bnj996.3 . . . . . 6  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
72, 3, 4, 5, 6bnj917 33080 . . . . 5  |-  ( y  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  y  e.  ( f `  i ) ) )
81, 7bnj771 32910 . . . 4  |-  ( th 
->  E. f E. n E. i ( ch  /\  i  e.  n  /\  y  e.  ( f `  i ) ) )
9 3anass 977 . . . . . 6  |-  ( ( ch  /\  i  e.  n  /\  y  e.  ( f `  i
) )  <->  ( ch  /\  ( i  e.  n  /\  y  e.  (
f `  i )
) ) )
10 bnj996.6 . . . . . . 7  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
1110anbi2i 694 . . . . . 6  |-  ( ( ch  /\  et )  <-> 
( ch  /\  (
i  e.  n  /\  y  e.  ( f `  i ) ) ) )
129, 11bitr4i 252 . . . . 5  |-  ( ( ch  /\  i  e.  n  /\  y  e.  ( f `  i
) )  <->  ( ch  /\  et ) )
13123exbii 1646 . . . 4  |-  ( E. f E. n E. i ( ch  /\  i  e.  n  /\  y  e.  ( f `  i ) )  <->  E. f E. n E. i ( ch  /\  et ) )
148, 13sylib 196 . . 3  |-  ( th 
->  E. f E. n E. i ( ch  /\  et ) )
15 bnj996.5 . . . . . . . . . 10  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
166, 4, 15bnj986 33100 . . . . . . . . 9  |-  ( ch 
->  E. m E. p ta )
1716ancli 551 . . . . . . . 8  |-  ( ch 
->  ( ch  /\  E. m E. p ta )
)
18 19.42vv 1951 . . . . . . . 8  |-  ( E. m E. p ( ch  /\  ta )  <->  ( ch  /\  E. m E. p ta ) )
1917, 18sylibr 212 . . . . . . 7  |-  ( ch 
->  E. m E. p
( ch  /\  ta ) )
2019anim1i 568 . . . . . 6  |-  ( ( ch  /\  et )  ->  ( E. m E. p ( ch  /\  ta )  /\  et ) )
21 19.41vv 1946 . . . . . 6  |-  ( E. m E. p ( ( ch  /\  ta )  /\  et )  <->  ( E. m E. p ( ch 
/\  ta )  /\  et ) )
2220, 21sylibr 212 . . . . 5  |-  ( ( ch  /\  et )  ->  E. m E. p
( ( ch  /\  ta )  /\  et ) )
23 df-3an 975 . . . . . 6  |-  ( ( ch  /\  ta  /\  et )  <->  ( ( ch 
/\  ta )  /\  et ) )
24232exbii 1645 . . . . 5  |-  ( E. m E. p ( ch  /\  ta  /\  et )  <->  E. m E. p
( ( ch  /\  ta )  /\  et ) )
2522, 24sylibr 212 . . . 4  |-  ( ( ch  /\  et )  ->  E. m E. p
( ch  /\  ta  /\  et ) )
26252eximi 1636 . . 3  |-  ( E. n E. i ( ch  /\  et )  ->  E. n E. i E. m E. p ( ch  /\  ta  /\  et ) )
2714, 26bnj593 32890 . 2  |-  ( th 
->  E. f E. n E. i E. m E. p ( ch  /\  ta  /\  et ) )
28 19.37v 1943 . . . . . . . . . 10  |-  ( E. p ( th  ->  ( ch  /\  ta  /\  et ) )  <->  ( th  ->  E. p ( ch 
/\  ta  /\  et ) ) )
2928exbii 1644 . . . . . . . . 9  |-  ( E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  E. m ( th 
->  E. p ( ch 
/\  ta  /\  et ) ) )
3029bnj132 32868 . . . . . . . 8  |-  ( E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  ( th  ->  E. m E. p ( ch  /\  ta  /\  et ) ) )
3130exbii 1644 . . . . . . 7  |-  ( E. i E. m E. p ( th  ->  ( ch  /\  ta  /\  et ) )  <->  E. i
( th  ->  E. m E. p ( ch  /\  ta  /\  et ) ) )
3231bnj132 32868 . . . . . 6  |-  ( E. i E. m E. p ( th  ->  ( ch  /\  ta  /\  et ) )  <->  ( th  ->  E. i E. m E. p ( ch  /\  ta  /\  et ) ) )
3332exbii 1644 . . . . 5  |-  ( E. n E. i E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  E. n ( th 
->  E. i E. m E. p ( ch  /\  ta  /\  et ) ) )
3433bnj132 32868 . . . 4  |-  ( E. n E. i E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)  <->  ( th  ->  E. n E. i E. m E. p ( ch  /\  ta  /\  et ) ) )
3534exbii 1644 . . 3  |-  ( E. f E. n E. i E. m E. p
( th  ->  ( ch  /\  ta  /\  et ) )  <->  E. f
( th  ->  E. n E. i E. m E. p ( ch  /\  ta  /\  et ) ) )
3635bnj132 32868 . 2  |-  ( E. f E. n E. i E. m E. p
( th  ->  ( ch  /\  ta  /\  et ) )  <->  ( th  ->  E. f E. n E. i E. m E. p ( ch  /\  ta  /\  et ) ) )
3727, 36mpbir 209 1  |-  E. f E. n E. i E. m E. p ( th  ->  ( ch  /\ 
ta  /\  et )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815    \ cdif 3473   (/)c0 3785   {csn 4027   U_ciun 4325   suc csuc 4880    Fn wfn 5582   ` cfv 5587   omcom 6679    /\ w-bnj17 32827    predc-bnj14 32829    FrSe w-bnj15 32833    trClc-bnj18 32835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-fn 5590  df-om 6680  df-bnj17 32828  df-bnj18 32836
This theorem is referenced by:  bnj1021  33110
  Copyright terms: Public domain W3C validator