Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj98 Structured version   Unicode version

Theorem bnj98 34026
Description: Technical lemma for bnj150 34035. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj98  |-  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) )

Proof of Theorem bnj98
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . . . 6  |-  i  e. 
_V
21sucid 4966 . . . . 5  |-  i  e. 
suc  i
3 n0i 3798 . . . . 5  |-  ( i  e.  suc  i  ->  -.  suc  i  =  (/) )
42, 3ax-mp 5 . . . 4  |-  -.  suc  i  =  (/)
5 df-suc 4893 . . . . . 6  |-  suc  i  =  ( i  u. 
{ i } )
6 df-un 3476 . . . . . 6  |-  ( i  u.  { i } )  =  { x  |  ( x  e.  i  \/  x  e. 
{ i } ) }
75, 6eqtri 2486 . . . . 5  |-  suc  i  =  { x  |  ( x  e.  i  \/  x  e.  { i } ) }
8 df1o2 7160 . . . . . . 7  |-  1o  =  { (/) }
97, 8eleq12i 2536 . . . . . 6  |-  ( suc  i  e.  1o  <->  { x  |  ( x  e.  i  \/  x  e. 
{ i } ) }  e.  { (/) } )
10 elsni 4057 . . . . . 6  |-  ( { x  |  ( x  e.  i  \/  x  e.  { i } ) }  e.  { (/) }  ->  { x  |  ( x  e.  i  \/  x  e.  {
i } ) }  =  (/) )
119, 10sylbi 195 . . . . 5  |-  ( suc  i  e.  1o  ->  { x  |  ( x  e.  i  \/  x  e.  { i } ) }  =  (/) )
127, 11syl5eq 2510 . . . 4  |-  ( suc  i  e.  1o  ->  suc  i  =  (/) )
134, 12mto 176 . . 3  |-  -.  suc  i  e.  1o
1413pm2.21i 131 . 2  |-  ( suc  i  e.  1o  ->  ( F `  suc  i
)  =  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R ) )
1514rgenw 2818 1  |-  A. i  e.  om  ( suc  i  e.  1o  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    = wceq 1395    e. wcel 1819   {cab 2442   A.wral 2807    u. cun 3469   (/)c0 3793   {csn 4032   U_ciun 4332   suc csuc 4889   ` cfv 5594   omcom 6699   1oc1o 7141    predc-bnj14 33841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-dif 3474  df-un 3476  df-nul 3794  df-sn 4033  df-suc 4893  df-1o 7148
This theorem is referenced by:  bnj150  34035
  Copyright terms: Public domain W3C validator