Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Unicode version

Theorem bnj97 28943
Description: Technical lemma for bnj150 28953. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj97  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  ( F `  (/) )  = 
pred ( x ,  A ,  R ) )
Distinct variable groups:    x, A    x, R
Allowed substitution hint:    F( x)

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 28940 . . 3  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R )  e.  _V )
2 0ex 4299 . . . . 5  |-  (/)  e.  _V
32bnj519 28809 . . . 4  |-  (  pred ( x ,  A ,  R )  e.  _V  ->  Fun  { <. (/) ,  pred ( x ,  A ,  R ) >. } )
4 bnj96.1 . . . . 5  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
54funeqi 5433 . . . 4  |-  ( Fun 
F  <->  Fun  { <. (/) ,  pred ( x ,  A ,  R ) >. } )
63, 5sylibr 204 . . 3  |-  (  pred ( x ,  A ,  R )  e.  _V  ->  Fun  F )
71, 6syl 16 . 2  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  Fun  F )
8 opex 4387 . . . 4  |-  <. (/) ,  pred ( x ,  A ,  R ) >.  e.  _V
98snid 3801 . . 3  |-  <. (/) ,  pred ( x ,  A ,  R ) >.  e.  { <.
(/) ,  pred ( x ,  A ,  R
) >. }
109, 4eleqtrri 2477 . 2  |-  <. (/) ,  pred ( x ,  A ,  R ) >.  e.  F
11 funopfv 5725 . 2  |-  ( Fun 
F  ->  ( <. (/)
,  pred ( x ,  A ,  R )
>.  e.  F  ->  ( F `  (/) )  = 
pred ( x ,  A ,  R ) ) )
127, 10, 11ee10 1382 1  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  ( F `  (/) )  = 
pred ( x ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588   {csn 3774   <.cop 3777   Fun wfun 5407   ` cfv 5413    predc-bnj14 28758    FrSe w-bnj15 28762
This theorem is referenced by:  bnj150  28953
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-bnj13 28761  df-bnj15 28763
  Copyright terms: Public domain W3C validator