Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj97 Unicode version

Theorem bnj97 28943
 Description: Technical lemma for bnj150 28953. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj96.1
Assertion
Ref Expression
bnj97
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem bnj97
StepHypRef Expression
1 bnj93 28940 . . 3
2 0ex 4299 . . . . 5
32bnj519 28809 . . . 4
4 bnj96.1 . . . . 5
54funeqi 5433 . . . 4
63, 5sylibr 204 . . 3
71, 6syl 16 . 2
8 opex 4387 . . . 4
98snid 3801 . . 3
109, 4eleqtrri 2477 . 2
11 funopfv 5725 . 2
127, 10, 11ee10 1382 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1649   wcel 1721  cvv 2916  c0 3588  csn 3774  cop 3777   wfun 5407  cfv 5413   c-bnj14 28758   w-bnj15 28762 This theorem is referenced by:  bnj150  28953 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-bnj13 28761  df-bnj15 28763
 Copyright terms: Public domain W3C validator