Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj967 Structured version   Visualization version   Unicode version

Theorem bnj967 29749
Description: Technical lemma for bnj69 29812. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj967.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj967.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj967.10  |-  D  =  ( om  \  { (/)
} )
bnj967.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj967.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj967.44  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
Assertion
Ref Expression
bnj967  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
Distinct variable groups:    y, f    y, i    y, n
Allowed substitution hints:    ph( y, f, i, m, n, p)    ps( y, f, i, m, n, p)    ch( y,
f, i, m, n, p)    A( y, f, i, m, n, p)    C( y, f, i, m, n, p)    D( y, f, i, m, n, p)    R( y, f, i, m, n, p)    G( y, f, i, m, n, p)    X( y, f, i, m, n, p)

Proof of Theorem bnj967
StepHypRef Expression
1 bnj967.44 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
213adant3 1027 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  C  e.  _V )
3 bnj967.3 . . . . . . . . 9  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
43bnj1235 29609 . . . . . . . 8  |-  ( ch 
->  f  Fn  n
)
543ad2ant1 1028 . . . . . . 7  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
f  Fn  n )
653ad2ant2 1029 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  f  Fn  n )
7 simp23 1042 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  p  =  suc  n )
8 simp3 1009 . . . . . . 7  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
)  ->  suc  i  e.  n )
983ad2ant3 1030 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  suc  i  e.  n )
102, 6, 7, 9bnj951 29580 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  suc  i  e.  n )
)
11 bnj967.10 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
1211bnj923 29572 . . . . . . . . 9  |-  ( n  e.  D  ->  n  e.  om )
133, 12bnj769 29566 . . . . . . . 8  |-  ( ch 
->  n  e.  om )
14133ad2ant1 1028 . . . . . . 7  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  n  e.  om )
1514, 8bnj240 29497 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  (
n  e.  om  /\  suc  i  e.  n
) )
16 nnord 6697 . . . . . . . 8  |-  ( n  e.  om  ->  Ord  n )
17 ordtr 5436 . . . . . . . 8  |-  ( Ord  n  ->  Tr  n
)
1816, 17syl 17 . . . . . . 7  |-  ( n  e.  om  ->  Tr  n )
19 trsuc 5506 . . . . . . 7  |-  ( ( Tr  n  /\  suc  i  e.  n )  ->  i  e.  n )
2018, 19sylan 474 . . . . . 6  |-  ( ( n  e.  om  /\  suc  i  e.  n
)  ->  i  e.  n )
2115, 20syl 17 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  i  e.  n )
22 bnj658 29554 . . . . . . 7  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  suc  i  e.  n
)  ->  ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n ) )
2322anim1i 571 . . . . . 6  |-  ( ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  suc  i  e.  n
)  /\  i  e.  n )  ->  (
( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n )  /\  i  e.  n
) )
24 df-bnj17 29485 . . . . . 6  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  i  e.  n )  <->  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n )  /\  i  e.  n
) )
2523, 24sylibr 216 . . . . 5  |-  ( ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  suc  i  e.  n
)  /\  i  e.  n )  ->  ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  i  e.  n ) )
2610, 21, 25syl2anc 666 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  i  e.  n ) )
27 bnj967.13 . . . . 5  |-  G  =  ( f  u.  { <. n ,  C >. } )
2827bnj945 29578 . . . 4  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  i  e.  n )  ->  ( G `  i
)  =  ( f `
 i ) )
2926, 28syl 17 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  i )  =  ( f `  i ) )
3027bnj945 29578 . . . 4  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  suc  i  e.  n
)  ->  ( G `  suc  i )  =  ( f `  suc  i ) )
3110, 30syl 17 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  ( f `  suc  i ) )
32 3simpb 1005 . . . 4  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
)  ->  ( i  e.  om  /\  suc  i  e.  n ) )
33323ad2ant3 1030 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  (
i  e.  om  /\  suc  i  e.  n
) )
343bnj1254 29614 . . . . 5  |-  ( ch 
->  ps )
35343ad2ant1 1028 . . . 4  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  ps )
36353ad2ant2 1029 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ps )
3729, 31, 33, 36bnj951 29580 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  (
( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
)
38 bnj967.2 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
39 bnj967.12 . . . 4  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
4039, 27bnj958 29744 . . 3  |-  ( ( G `  i )  =  ( f `  i )  ->  A. y
( G `  i
)  =  ( f `
 i ) )
4138, 40bnj953 29743 . 2  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4237, 41syl 17 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   A.wral 2736   _Vcvv 3044    \ cdif 3400    u. cun 3401   (/)c0 3730   {csn 3967   <.cop 3973   U_ciun 4277   Tr wtr 4496   Ord word 5421   suc csuc 5424    Fn wfn 5576   ` cfv 5581   omcom 6689    /\ w-bnj17 29484    predc-bnj14 29486    FrSe w-bnj15 29490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638  ax-un 6580  ax-reg 8104
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-res 4845  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-fv 5589  df-om 6690  df-bnj17 29485
This theorem is referenced by:  bnj910  29752
  Copyright terms: Public domain W3C validator