Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj964 Structured version   Unicode version

Theorem bnj964 32269
Description: Technical lemma for bnj69 32334. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj964.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj964.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj964.5  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj964.8  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj964.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj964.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj964.96  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
bnj964.165  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
Assertion
Ref Expression
bnj964  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
Distinct variable groups:    A, f,
i, n    D, i    i, G    R, f, i, n   
i, X    f, p, i    y, f, i, n   
i, m    ph, i
Allowed substitution hints:    ph( y, f, m, n, p)    ps( y, f, i, m, n, p)    ch( y, f, i, m, n, p)    A( y, m, p)    C( y,
f, i, m, n, p)    D( y, f, m, n, p)    R( y, m, p)    G( y, f, m, n, p)    X( y, f, m, n, p)    ps'( y, f, i, m, n, p)    ps"( y, f, i, m, n, p)

Proof of Theorem bnj964
StepHypRef Expression
1 nfv 1674 . . . 4  |-  F/ i ( R  FrSe  A  /\  X  e.  A
)
2 bnj964.2 . . . . . . . 8  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
32bnj1095 32108 . . . . . . 7  |-  ( ps 
->  A. i ps )
4 bnj964.3 . . . . . . 7  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
53, 4bnj1096 32109 . . . . . 6  |-  ( ch 
->  A. i ch )
65nfi 1597 . . . . 5  |-  F/ i ch
7 nfv 1674 . . . . 5  |-  F/ i  n  =  suc  m
8 nfv 1674 . . . . 5  |-  F/ i  p  =  suc  n
96, 7, 8nf3an 1868 . . . 4  |-  F/ i ( ch  /\  n  =  suc  m  /\  p  =  suc  n )
101, 9nfan 1866 . . 3  |-  F/ i ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )
11 bnj255 32026 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) )
12 bnj645 32075 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  suc  i  e.  p )
13 simp3 990 . . . . . . . 8  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  p  =  suc  n )
1413bnj706 32079 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  p  =  suc  n )
15 eleq2 2527 . . . . . . . . 9  |-  ( p  =  suc  n  -> 
( suc  i  e.  p 
<->  suc  i  e.  suc  n ) )
1615biimpac 486 . . . . . . . 8  |-  ( ( suc  i  e.  p  /\  p  =  suc  n )  ->  suc  i  e.  suc  n )
17 elsuci 4894 . . . . . . . . 9  |-  ( suc  i  e.  suc  n  ->  ( suc  i  e.  n  \/  suc  i  =  n ) )
18 eqcom 2463 . . . . . . . . . 10  |-  ( suc  i  =  n  <->  n  =  suc  i )
1918orbi2i 519 . . . . . . . . 9  |-  ( ( suc  i  e.  n  \/  suc  i  =  n )  <->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2017, 19sylib 196 . . . . . . . 8  |-  ( suc  i  e.  suc  n  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2116, 20syl 16 . . . . . . 7  |-  ( ( suc  i  e.  p  /\  p  =  suc  n )  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2212, 14, 21syl2anc 661 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
23 df-3an 967 . . . . . . . . . . . . 13  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
)  <->  ( ( i  e.  om  /\  suc  i  e.  p )  /\  suc  i  e.  n
) )
24233anbi3i 1181 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  suc  i  e.  n ) ) )
25 bnj255 32026 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  suc  i  e.  n ) ) )
2624, 25bitr4i 252 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n ) )
27 bnj345 32035 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n )  <->  ( suc  i  e.  n  /\  ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  ( i  e.  om  /\ 
suc  i  e.  p
) ) )
28 bnj252 32024 . . . . . . . . . . 11  |-  ( ( suc  i  e.  n  /\  ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
2926, 27, 283bitri 271 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
3011anbi2i 694 . . . . . . . . . 10  |-  ( ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
3129, 30bitr4i 252 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) ) )
32 bnj964.96 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
3331, 32sylbir 213 . . . . . . . 8  |-  ( ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
3433ex 434 . . . . . . 7  |-  ( suc  i  e.  n  -> 
( ( ( R 
FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
35 df-3an 967 . . . . . . . . . . . . 13  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i )  <->  ( (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i ) )
36353anbi3i 1181 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  n  =  suc  i ) ) )
37 bnj255 32026 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  n  =  suc  i ) ) )
3836, 37bitr4i 252 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i ) )
39 bnj345 32035 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i )  <->  ( n  =  suc  i  /\  ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) )
40 bnj252 32024 . . . . . . . . . . 11  |-  ( ( n  =  suc  i  /\  ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4138, 39, 403bitri 271 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4211anbi2i 694 . . . . . . . . . 10  |-  ( ( n  =  suc  i  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4341, 42bitr4i 252 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) ) )
44 bnj964.165 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4543, 44sylbir 213 . . . . . . . 8  |-  ( ( n  =  suc  i  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4645ex 434 . . . . . . 7  |-  ( n  =  suc  i  -> 
( ( ( R 
FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
4734, 46jaoi 379 . . . . . 6  |-  ( ( suc  i  e.  n  \/  n  =  suc  i )  ->  (
( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
4822, 47mpcom 36 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
4911, 48sylbir 213 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
50493expia 1190 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( ( i  e. 
om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
5110, 50alrimi 1816 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  A. i ( ( i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) ) )
52 bnj964.5 . . . . 5  |-  ( ps'  <->  [. p  /  n ]. ps )
53 vex 3081 . . . . 5  |-  p  e. 
_V
542, 52, 53bnj539 32217 . . . 4  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  p  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
55 bnj964.8 . . . 4  |-  ( ps"  <->  [. G  / 
f ]. ps' )
56 bnj964.12 . . . 4  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
57 bnj964.13 . . . 4  |-  G  =  ( f  u.  { <. n ,  C >. } )
5854, 55, 56, 57bnj965 32268 . . 3  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  p  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
5958bnj115 32047 . 2  |-  ( ps"  <->  A. i
( ( i  e. 
om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
6051, 59sylibr 212 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758   A.wral 2799   [.wsbc 3294    u. cun 3435   {csn 3986   <.cop 3992   U_ciun 4280   suc csuc 4830    Fn wfn 5522   ` cfv 5527   omcom 6587    /\ w-bnj17 32007    predc-bnj14 32009    FrSe w-bnj15 32013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-suc 4834  df-iota 5490  df-fv 5535  df-bnj17 32008
This theorem is referenced by:  bnj910  32274
  Copyright terms: Public domain W3C validator