Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj964 Structured version   Unicode version

Theorem bnj964 33297
Description: Technical lemma for bnj69 33362. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj964.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj964.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj964.5  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj964.8  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj964.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj964.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj964.96  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
bnj964.165  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
Assertion
Ref Expression
bnj964  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
Distinct variable groups:    A, f,
i, n    D, i    i, G    R, f, i, n   
i, X    f, p, i    y, f, i, n   
i, m    ph, i
Allowed substitution hints:    ph( y, f, m, n, p)    ps( y, f, i, m, n, p)    ch( y, f, i, m, n, p)    A( y, m, p)    C( y,
f, i, m, n, p)    D( y, f, m, n, p)    R( y, m, p)    G( y, f, m, n, p)    X( y, f, m, n, p)    ps'( y, f, i, m, n, p)    ps"( y, f, i, m, n, p)

Proof of Theorem bnj964
StepHypRef Expression
1 nfv 1683 . . . 4  |-  F/ i ( R  FrSe  A  /\  X  e.  A
)
2 bnj964.2 . . . . . . . 8  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
32bnj1095 33136 . . . . . . 7  |-  ( ps 
->  A. i ps )
4 bnj964.3 . . . . . . 7  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
53, 4bnj1096 33137 . . . . . 6  |-  ( ch 
->  A. i ch )
65nfi 1606 . . . . 5  |-  F/ i ch
7 nfv 1683 . . . . 5  |-  F/ i  n  =  suc  m
8 nfv 1683 . . . . 5  |-  F/ i  p  =  suc  n
96, 7, 8nf3an 1877 . . . 4  |-  F/ i ( ch  /\  n  =  suc  m  /\  p  =  suc  n )
101, 9nfan 1875 . . 3  |-  F/ i ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )
11 bnj255 33054 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) )
12 bnj645 33103 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  suc  i  e.  p )
13 simp3 998 . . . . . . . 8  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  p  =  suc  n )
1413bnj706 33107 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  p  =  suc  n )
15 eleq2 2540 . . . . . . . . 9  |-  ( p  =  suc  n  -> 
( suc  i  e.  p 
<->  suc  i  e.  suc  n ) )
1615biimpac 486 . . . . . . . 8  |-  ( ( suc  i  e.  p  /\  p  =  suc  n )  ->  suc  i  e.  suc  n )
17 elsuci 4944 . . . . . . . . 9  |-  ( suc  i  e.  suc  n  ->  ( suc  i  e.  n  \/  suc  i  =  n ) )
18 eqcom 2476 . . . . . . . . . 10  |-  ( suc  i  =  n  <->  n  =  suc  i )
1918orbi2i 519 . . . . . . . . 9  |-  ( ( suc  i  e.  n  \/  suc  i  =  n )  <->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2017, 19sylib 196 . . . . . . . 8  |-  ( suc  i  e.  suc  n  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2116, 20syl 16 . . . . . . 7  |-  ( ( suc  i  e.  p  /\  p  =  suc  n )  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
2212, 14, 21syl2anc 661 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( suc  i  e.  n  \/  n  =  suc  i ) )
23 df-3an 975 . . . . . . . . . . . . 13  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
)  <->  ( ( i  e.  om  /\  suc  i  e.  p )  /\  suc  i  e.  n
) )
24233anbi3i 1189 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  suc  i  e.  n ) ) )
25 bnj255 33054 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  suc  i  e.  n ) ) )
2624, 25bitr4i 252 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n ) )
27 bnj345 33063 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  suc  i  e.  n )  <->  ( suc  i  e.  n  /\  ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  ( i  e.  om  /\ 
suc  i  e.  p
) ) )
28 bnj252 33052 . . . . . . . . . . 11  |-  ( ( suc  i  e.  n  /\  ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
2926, 27, 283bitri 271 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
3011anbi2i 694 . . . . . . . . . 10  |-  ( ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
3129, 30bitr4i 252 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  <->  ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) ) )
32 bnj964.96 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  suc  i  e.  n
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
3331, 32sylbir 213 . . . . . . . 8  |-  ( ( suc  i  e.  n  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
3433ex 434 . . . . . . 7  |-  ( suc  i  e.  n  -> 
( ( ( R 
FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
35 df-3an 975 . . . . . . . . . . . . 13  |-  ( ( i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i )  <->  ( (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i ) )
36353anbi3i 1189 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  n  =  suc  i ) ) )
37 bnj255 33054 . . . . . . . . . . . 12  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
( i  e.  om  /\ 
suc  i  e.  p
)  /\  n  =  suc  i ) ) )
3836, 37bitr4i 252 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i ) )
39 bnj345 33063 . . . . . . . . . . 11  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
)  /\  n  =  suc  i )  <->  ( n  =  suc  i  /\  ( R  FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) )
40 bnj252 33052 . . . . . . . . . . 11  |-  ( ( n  =  suc  i  /\  ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4138, 39, 403bitri 271 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4211anbi2i 694 . . . . . . . . . 10  |-  ( ( n  =  suc  i  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) ) ) )
4341, 42bitr4i 252 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  <->  ( n  =  suc  i  /\  (
( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) ) )
44 bnj964.165 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p  /\  n  =  suc  i ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4543, 44sylbir 213 . . . . . . . 8  |-  ( ( n  =  suc  i  /\  ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p ) )  -> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
4645ex 434 . . . . . . 7  |-  ( n  =  suc  i  -> 
( ( ( R 
FrSe  A  /\  X  e.  A )  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
4734, 46jaoi 379 . . . . . 6  |-  ( ( suc  i  e.  n  \/  n  =  suc  i )  ->  (
( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
4822, 47mpcom 36 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
4911, 48sylbir 213 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  /\  (
i  e.  om  /\  suc  i  e.  p
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
50493expia 1198 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( ( i  e. 
om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
5110, 50alrimi 1825 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  A. i ( ( i  e.  om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) ) )
52 bnj964.5 . . . . 5  |-  ( ps'  <->  [. p  /  n ]. ps )
53 vex 3116 . . . . 5  |-  p  e. 
_V
542, 52, 53bnj539 33245 . . . 4  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  p  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
55 bnj964.8 . . . 4  |-  ( ps"  <->  [. G  / 
f ]. ps' )
56 bnj964.12 . . . 4  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
57 bnj964.13 . . . 4  |-  G  =  ( f  u.  { <. n ,  C >. } )
5854, 55, 56, 57bnj965 33296 . . 3  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  p  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
5958bnj115 33075 . 2  |-  ( ps"  <->  A. i
( ( i  e. 
om  /\  suc  i  e.  p )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
6051, 59sylibr 212 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ps" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814   [.wsbc 3331    u. cun 3474   {csn 4027   <.cop 4033   U_ciun 4325   suc csuc 4880    Fn wfn 5583   ` cfv 5588   omcom 6685    /\ w-bnj17 33035    predc-bnj14 33037    FrSe w-bnj15 33041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-suc 4884  df-iota 5551  df-fv 5596  df-bnj17 33036
This theorem is referenced by:  bnj910  33302
  Copyright terms: Public domain W3C validator