Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj958 Structured version   Unicode version

Theorem bnj958 29201
 Description: Technical lemma for bnj69 29269. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj958.1
bnj958.2
Assertion
Ref Expression
bnj958
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,,,,)   (,,,,)   (,,,,)   (,,,,)

Proof of Theorem bnj958
StepHypRef Expression
1 bnj958.2 . . . . 5
2 nfcv 2562 . . . . . 6
3 nfcv 2562 . . . . . . . 8
4 bnj958.1 . . . . . . . . 9
5 nfiu1 4298 . . . . . . . . 9
64, 5nfcxfr 2560 . . . . . . . 8
73, 6nfop 4172 . . . . . . 7
87nfsn 4026 . . . . . 6
92, 8nfun 3596 . . . . 5
101, 9nfcxfr 2560 . . . 4
11 nfcv 2562 . . . 4
1210, 11nffv 5810 . . 3
1312nfeq1 2577 . 2
1413nfri 1896 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1401   wceq 1403   cun 3409  csn 3969  cop 3975  ciun 4268  cfv 5523   c-bnj14 28943 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-iota 5487  df-fv 5531 This theorem is referenced by:  bnj966  29205  bnj967  29206
 Copyright terms: Public domain W3C validator