Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj953 Structured version   Unicode version

Theorem bnj953 32235
Description: Technical lemma for bnj69 32304. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj953.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj953.2  |-  ( ( G `  i )  =  ( f `  i )  ->  A. y
( G `  i
)  =  ( f `
 i ) )
Assertion
Ref Expression
bnj953  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )

Proof of Theorem bnj953
StepHypRef Expression
1 bnj312 32003 . . 3  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  <->  ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( G `  i )  =  ( f `  i )  /\  ( i  e. 
om  /\  suc  i  e.  n )  /\  ps ) )
2 bnj251 31993 . . 3  |-  ( ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( G `  i )  =  ( f `  i )  /\  ( i  e. 
om  /\  suc  i  e.  n )  /\  ps ) 
<->  ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( ( G `  i )  =  ( f `  i )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
) ) )
31, 2bitri 249 . 2  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  <->  ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( ( G `  i )  =  ( f `  i )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
) ) )
4 bnj953.1 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
54bnj115 32017 . . . . 5  |-  ( ps  <->  A. i ( ( i  e.  om  /\  suc  i  e.  n )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
6 sp 1796 . . . . . 6  |-  ( A. i ( ( i  e.  om  /\  suc  i  e.  n )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  -> 
( ( i  e. 
om  /\  suc  i  e.  n )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) ) )
76impcom 430 . . . . 5  |-  ( ( ( i  e.  om  /\ 
suc  i  e.  n
)  /\  A. i
( ( i  e. 
om  /\  suc  i  e.  n )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) ) )  ->  (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
85, 7sylan2b 475 . . . 4  |-  ( ( ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
9 bnj953.2 . . . . 5  |-  ( ( G `  i )  =  ( f `  i )  ->  A. y
( G `  i
)  =  ( f `
 i ) )
109bnj956 32073 . . . 4  |-  ( ( G `  i )  =  ( f `  i )  ->  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
11 eqtr3 2479 . . . 4  |-  ( ( ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  /\  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  -> 
( f `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
128, 10, 11syl2anr 478 . . 3  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( ( i  e. 
om  /\  suc  i  e.  n )  /\  ps ) )  ->  (
f `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
13 eqtr 2477 . . 3  |-  ( ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( f `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) )  ->  ( G `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) )
1412, 13sylan2 474 . 2  |-  ( ( ( G `  suc  i )  =  ( f `  suc  i
)  /\  ( ( G `  i )  =  ( f `  i )  /\  (
( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )
) )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
153, 14sylbi 195 1  |-  ( ( ( G `  i
)  =  ( f `
 i )  /\  ( G `  suc  i
)  =  ( f `
 suc  i )  /\  ( i  e.  om  /\ 
suc  i  e.  n
)  /\  ps )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   A.wral 2795   U_ciun 4272   suc csuc 4822   ` cfv 5519   omcom 6579    /\ w-bnj17 31977    predc-bnj14 31979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-ral 2800  df-rex 2801  df-iun 4274  df-bnj17 31978
This theorem is referenced by:  bnj967  32241
  Copyright terms: Public domain W3C validator