Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj953 Structured version   Unicode version

Theorem bnj953 29311
 Description: Technical lemma for bnj69 29380. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj953.1
bnj953.2
Assertion
Ref Expression
bnj953

Proof of Theorem bnj953
StepHypRef Expression
1 bnj312 29078 . . 3
2 bnj251 29068 . . 3
31, 2bitri 249 . 2
4 bnj953.1 . . . . . 6
54bnj115 29092 . . . . 5
6 sp 1883 . . . . . 6
76impcom 428 . . . . 5
85, 7sylan2b 473 . . . 4
9 bnj953.2 . . . . 5
109bnj956 29149 . . . 4
11 eqtr3 2430 . . . 4
128, 10, 11syl2anr 476 . . 3
13 eqtr 2428 . . 3
1412, 13sylan2 472 . 2
153, 14sylbi 195 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 367  wal 1403   wceq 1405   wcel 1842  wral 2753  ciun 4270   csuc 5411  cfv 5568  com 6682   w-bnj17 29052   c-bnj14 29054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-ral 2758  df-rex 2759  df-iun 4272  df-bnj17 29053 This theorem is referenced by:  bnj967  29317
 Copyright terms: Public domain W3C validator