Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj934 Structured version   Unicode version

Theorem bnj934 29196
 Description: Technical lemma for bnj69 29269. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj934.1
bnj934.4
bnj934.7
bnj934.50
Assertion
Ref Expression
bnj934
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,,)   ()   ()   (,,)   ()   (,,)   (,,)

Proof of Theorem bnj934
StepHypRef Expression
1 bnj934.1 . . . 4
2 eqtr 2426 . . . 4
31, 2sylan2b 473 . . 3
4 bnj934.7 . . . . 5
5 bnj934.4 . . . . . . . 8
6 vex 3059 . . . . . . . 8
71, 5, 6bnj523 29148 . . . . . . 7
87, 1bitr4i 252 . . . . . 6
98sbcbii 3330 . . . . 5
104, 9bitri 249 . . . 4
11 bnj934.50 . . . 4
121, 10, 11bnj609 29178 . . 3
133, 12sylibr 212 . 2
1413ancoms 451 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 367   wceq 1403   wcel 1840  cvv 3056  wsbc 3274  c0 3735  cfv 5523   c-bnj14 28943 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378 This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-rex 2757  df-v 3058  df-sbc 3275  df-uni 4189  df-br 4393  df-iota 5487  df-fv 5531 This theorem is referenced by:  bnj929  29197
 Copyright terms: Public domain W3C validator