Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj927 Structured version   Unicode version

Theorem bnj927 34247
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj927.1  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj927.2  |-  C  e. 
_V
Assertion
Ref Expression
bnj927  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p )

Proof of Theorem bnj927
StepHypRef Expression
1 simpr 459 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  f  Fn  n )
2 vex 3109 . . . . . 6  |-  n  e. 
_V
3 bnj927.2 . . . . . 6  |-  C  e. 
_V
42, 3fnsn 5623 . . . . 5  |-  { <. n ,  C >. }  Fn  { n }
54a1i 11 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  { <. n ,  C >. }  Fn  {
n } )
6 bnj521 34212 . . . . 5  |-  ( n  i^i  { n }
)  =  (/)
76a1i 11 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( n  i^i  { n } )  =  (/) )
8 fnun 5669 . . . 4  |-  ( ( ( f  Fn  n  /\  { <. n ,  C >. }  Fn  { n } )  /\  (
n  i^i  { n } )  =  (/) )  ->  ( f  u. 
{ <. n ,  C >. } )  Fn  (
n  u.  { n } ) )
91, 5, 7, 8syl21anc 1225 . . 3  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( f  u.  { <. n ,  C >. } )  Fn  (
n  u.  { n } ) )
10 bnj927.1 . . . 4  |-  G  =  ( f  u.  { <. n ,  C >. } )
1110fneq1i 5657 . . 3  |-  ( G  Fn  ( n  u. 
{ n } )  <-> 
( f  u.  { <. n ,  C >. } )  Fn  ( n  u.  { n }
) )
129, 11sylibr 212 . 2  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  ( n  u.  { n } ) )
13 df-suc 4873 . . . . . 6  |-  suc  n  =  ( n  u. 
{ n } )
1413eqeq2i 2472 . . . . 5  |-  ( p  =  suc  n  <->  p  =  ( n  u.  { n } ) )
1514biimpi 194 . . . 4  |-  ( p  =  suc  n  ->  p  =  ( n  u.  { n } ) )
1615adantr 463 . . 3  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  p  =  ( n  u.  { n } ) )
1716fneq2d 5654 . 2  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( G  Fn  p  <->  G  Fn  (
n  u.  { n } ) ) )
1812, 17mpbird 232 1  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    u. cun 3459    i^i cin 3460   (/)c0 3783   {csn 4016   <.cop 4022   suc csuc 4869    Fn wfn 5565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-reg 8010
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-id 4784  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-fun 5572  df-fn 5573
This theorem is referenced by:  bnj941  34251  bnj929  34414
  Copyright terms: Public domain W3C validator