Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj918 Structured version   Visualization version   Unicode version

Theorem bnj918 29577
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj918.1
Assertion
Ref Expression
bnj918

Proof of Theorem bnj918
StepHypRef Expression
1 bnj918.1 . 2
2 vex 3048 . . 3
3 snex 4641 . . 3
42, 3unex 6589 . 2
51, 4eqeltri 2525 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1444   wcel 1887  cvv 3045   cun 3402  csn 3968  cop 3974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639  ax-un 6583 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-rex 2743  df-v 3047  df-dif 3407  df-un 3409  df-nul 3732  df-sn 3969  df-pr 3971  df-uni 4199 This theorem is referenced by:  bnj528  29700  bnj929  29747  bnj965  29753  bnj910  29759  bnj985  29764  bnj999  29768  bnj1018  29773  bnj907  29776
 Copyright terms: Public domain W3C validator