Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj908 Structured version   Unicode version

Theorem bnj908 33285
Description: Technical lemma for bnj69 33362. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj908.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj908.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj908.3  |-  D  =  ( om  \  { (/)
} )
bnj908.4  |-  ( ch  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
bnj908.5  |-  ( th  <->  A. m  e.  D  ( m  _E  n  ->  [. m  /  n ]. ch ) )
bnj908.10  |-  ( ph'  <->  [. m  /  n ]. ph )
bnj908.11  |-  ( ps'  <->  [. m  /  n ]. ps )
bnj908.12  |-  ( ch'  <->  [. m  /  n ]. ch )
bnj908.13  |-  ( ph"  <->  [. G  / 
f ]. ph )
bnj908.14  |-  ( ps"  <->  [. G  / 
f ]. ps )
bnj908.15  |-  ( ch"  <->  [. G  / 
f ]. ch )
bnj908.16  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj908.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj908.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj908.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj908.20  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
bnj908.21  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
bnj908.22  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj908.23  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
bnj908.24  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj908.25  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
bnj908.26  |-  G  =  ( f  u.  { <. m ,  C >. } )
Assertion
Ref Expression
bnj908  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  E. f ( G  Fn  n  /\  ph"  /\  ps" ) )
Distinct variable groups:    A, f,
i, m, n, p   
y, A, f, i, n, p    D, p   
i, G, y    R, f, i, m, n, p   
y, R    et, f,
i    x, f, m, n, p    i, ph', p    ph, m, p    ps, m, p    th, p
Allowed substitution hints:    ph( x, y, f, i, n)    ps( x, y, f, i, n)    ch( x, y, f, i, m, n, p)    th( x, y, f, i, m, n)    ta( x, y, f, i, m, n, p)    et( x, y, m, n, p)    ze( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    rh( x, y, f, i, m, n, p)    A( x)    B( x, y, f, i, m, n, p)    C( x, y, f, i, m, n, p)    D( x, y, f, i, m, n)    R( x)    G( x, f, m, n, p)    K( x, y, f, i, m, n, p)    L( x, y, f, i, m, n, p)    ph'( x, y, f, m, n)    ps'( x, y, f, i, m, n, p)    ch'( x, y, f, i, m, n, p)    ph"( x, y, f, i, m, n, p)    ps"( x, y, f, i, m, n, p)    ch"( x, y, f, i, m, n, p)

Proof of Theorem bnj908
StepHypRef Expression
1 bnj248 33049 . . . . . 6  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  <->  ( (
( R  FrSe  A  /\  x  e.  A
)  /\  ch' )  /\  et ) )
2 bnj908.4 . . . . . . . . . . 11  |-  ( ch  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
3 bnj908.10 . . . . . . . . . . 11  |-  ( ph'  <->  [. m  /  n ]. ph )
4 bnj908.11 . . . . . . . . . . 11  |-  ( ps'  <->  [. m  /  n ]. ps )
5 bnj908.12 . . . . . . . . . . 11  |-  ( ch'  <->  [. m  /  n ]. ch )
6 vex 3116 . . . . . . . . . . 11  |-  m  e. 
_V
72, 3, 4, 5, 6bnj207 33235 . . . . . . . . . 10  |-  ( ch'  <->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  m  /\  ph'  /\  ps' ) ) )
87biimpi 194 . . . . . . . . 9  |-  ( ch'  ->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  m  /\  ph'  /\  ps' ) ) )
9 euex 2303 . . . . . . . . 9  |-  ( E! f ( f  Fn  m  /\  ph'  /\  ps' )  ->  E. f ( f  Fn  m  /\  ph'  /\  ps' ) )
108, 9syl6 33 . . . . . . . 8  |-  ( ch'  ->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E. f
( f  Fn  m  /\  ph'  /\  ps' ) ) )
1110impcom 430 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ch' )  ->  E. f ( f  Fn  m  /\  ph'  /\  ps' ) )
12 bnj908.17 . . . . . . 7  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
1311, 12bnj1198 33150 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  /\  ch' )  ->  E. f ta )
141, 13bnj832 33111 . . . . 5  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  E. f ta )
15 bnj645 33103 . . . . 5  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  et )
16 19.41v 1945 . . . . 5  |-  ( E. f ( ta  /\  et )  <->  ( E. f ta  /\  et ) )
1714, 15, 16sylanbrc 664 . . . 4  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  E. f ( ta  /\  et ) )
18 bnj642 33101 . . . 4  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  R  FrSe  A )
19 19.41v 1945 . . . 4  |-  ( E. f ( ( ta 
/\  et )  /\  R  FrSe  A )  <->  ( E. f ( ta  /\  et )  /\  R  FrSe  A ) )
2017, 18, 19sylanbrc 664 . . 3  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  E. f ( ( ta 
/\  et )  /\  R  FrSe  A ) )
21 bnj170 33047 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et )  <->  ( ( ta  /\  et )  /\  R  FrSe  A ) )
2220, 21bnj1198 33150 . 2  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  E. f ( R  FrSe  A  /\  ta  /\  et ) )
23 bnj908.18 . . . 4  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
24 bnj908.19 . . . 4  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
25 bnj908.1 . . . . . 6  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
2625, 3, 6bnj523 33241 . . . . 5  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
27 bnj908.2 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
2827, 4, 6bnj539 33245 . . . . 5  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
29 bnj908.3 . . . . 5  |-  D  =  ( om  \  { (/)
} )
30 bnj908.16 . . . . 5  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
3126, 28, 29, 30, 12, 23bnj544 33248 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
3223, 24, 31bnj561 33257 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
33 bnj908.13 . . . . . 6  |-  ( ph"  <->  [. G  / 
f ]. ph )
3430bnj528 33243 . . . . . 6  |-  G  e. 
_V
3525, 33, 34bnj609 33271 . . . . 5  |-  ( ph"  <->  ( G `  (/) )  =  pred ( x ,  A ,  R ) )
3626, 29, 30, 12, 23, 31, 35bnj545 33249 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  ph" )
3723, 24, 36bnj562 33258 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  ph" )
38 bnj908.20 . . . 4  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
39 bnj908.22 . . . 4  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
40 bnj908.23 . . . 4  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
41 bnj908.24 . . . 4  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
42 bnj908.25 . . . 4  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
43 bnj908.26 . . . 4  |-  G  =  ( f  u.  { <. m ,  C >. } )
44 bnj908.21 . . . 4  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
45 bnj908.14 . . . . 5  |-  ( ps"  <->  [. G  / 
f ]. ps )
4627, 45, 34bnj611 33272 . . . 4  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
4729, 30, 12, 23, 24, 38, 39, 40, 41, 42, 43, 26, 28, 31, 44, 32, 46bnj571 33260 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  ps" )
4832, 37, 473jca 1176 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et )  -> 
( G  Fn  n  /\  ph"  /\  ps" ) )
4922, 48bnj593 33098 1  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  ch' 
/\  et )  ->  E. f ( G  Fn  n  /\  ph"  /\  ps" ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   E!weu 2275    =/= wne 2662   A.wral 2814   [.wsbc 3331    \ cdif 3473    u. cun 3474   (/)c0 3785   {csn 4027   <.cop 4033   U_ciun 4325   class class class wbr 4447    _E cep 4789   suc csuc 4880    Fn wfn 5583   ` cfv 5588   omcom 6685    /\ w-bnj17 33035    predc-bnj14 33037    FrSe w-bnj15 33041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6577  ax-reg 8019
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6686  df-bnj17 33036  df-bnj14 33038  df-bnj13 33040  df-bnj15 33042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator