Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj906 Structured version   Unicode version

Theorem bnj906 32225
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj906  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)

Proof of Theorem bnj906
Dummy variables  f 
i  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 7180 . . . . . . . 8  |-  1o  e.  om
2 1n0 7037 . . . . . . . 8  |-  1o  =/=  (/)
3 eldifsn 4100 . . . . . . . 8  |-  ( 1o  e.  ( om  \  { (/)
} )  <->  ( 1o  e.  om  /\  1o  =/=  (/) ) )
41, 2, 3mpbir2an 911 . . . . . . 7  |-  1o  e.  ( om  \  { (/) } )
5 ne0i 3743 . . . . . . 7  |-  ( 1o  e.  ( om  \  { (/)
} )  ->  ( om  \  { (/) } )  =/=  (/) )
64, 5ax-mp 5 . . . . . 6  |-  ( om 
\  { (/) } )  =/=  (/)
7 biid 236 . . . . . . 7  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
8 biid 236 . . . . . . 7  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
9 eqid 2451 . . . . . . 7  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
107, 8, 9bnj852 32216 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  ( om  \  { (/) } ) E! f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
11 r19.2z 3869 . . . . . 6  |-  ( ( ( om  \  { (/)
} )  =/=  (/)  /\  A. n  e.  ( om  \  { (/) } ) E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )  ->  E. n  e.  ( om  \  { (/)
} ) E! f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
126, 10, 11sylancr 663 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. n  e.  ( om  \  { (/) } ) E! f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
13 euex 2288 . . . . 5  |-  ( E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  ->  E. f ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1412, 13bnj31 32010 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. n  e.  ( om  \  { (/) } ) E. f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
15 rexcom4 3090 . . . 4  |-  ( E. n  e.  ( om 
\  { (/) } ) E. f ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  E. f E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1614, 15sylib 196 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. f E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
17 abid 2438 . . 3  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  <->  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1816, 17bnj1198 32091 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. f  f  e. 
{ f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } )
19 simp2 989 . . . . . . 7  |-  ( ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  ->  ( f `  (/) )  =  pred ( X ,  A ,  R ) )
2019reximi 2921 . . . . . 6  |-  ( E. n  e.  ( om 
\  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  ->  E. n  e.  ( om  \  { (/) } ) ( f `  (/) )  =  pred ( X ,  A ,  R ) )
2117, 20sylbi 195 . . . . 5  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  E. n  e.  ( om  \  { (/)
} ) ( f `
 (/) )  =  pred ( X ,  A ,  R ) )
22 df-rex 2801 . . . . . 6  |-  ( E. n  e.  ( om 
\  { (/) } ) ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  E. n ( n  e.  ( om  \  { (/)
} )  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
) )
23 19.41v 1929 . . . . . . 7  |-  ( E. n ( n  e.  ( om  \  { (/)
} )  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)  <->  ( E. n  n  e.  ( om  \  { (/) } )  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )
) )
2423simprbi 464 . . . . . 6  |-  ( E. n ( n  e.  ( om  \  { (/)
} )  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)  ->  ( f `  (/) )  =  pred ( X ,  A ,  R ) )
2522, 24sylbi 195 . . . . 5  |-  ( E. n  e.  ( om 
\  { (/) } ) ( f `  (/) )  = 
pred ( X ,  A ,  R )  ->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2621, 25syl 16 . . . 4  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  ( f `  (/) )  =  pred ( X ,  A ,  R ) )
27 eqid 2451 . . . . . . 7  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
289, 27bnj900 32224 . . . . . 6  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  (/)  e.  dom  f )
29 fveq2 5791 . . . . . . 7  |-  ( i  =  (/)  ->  ( f `
 i )  =  ( f `  (/) ) )
3029ssiun2s 4314 . . . . . 6  |-  ( (/)  e.  dom  f  ->  (
f `  (/) )  C_  U_ i  e.  dom  f
( f `  i
) )
3128, 30syl 16 . . . . 5  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  ( f `  (/) )  C_  U_ i  e.  dom  f ( f `
 i ) )
32 ssiun2 4313 . . . . . 6  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  U_ i  e. 
dom  f ( f `
 i )  C_  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i ) )
337, 8, 9, 27bnj882 32221 . . . . . 6  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
3432, 33syl6sseqr 3503 . . . . 5  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  U_ i  e. 
dom  f ( f `
 i )  C_  trCl ( X ,  A ,  R ) )
3531, 34sstrd 3466 . . . 4  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  ( f `  (/) )  C_  trCl ( X ,  A ,  R ) )
3626, 35eqsstr3d 3491 . . 3  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  pred ( X ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) )
3736exlimiv 1689 . 2  |-  ( E. f  f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  pred ( X ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) )
3818, 37syl 16 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   E!weu 2260   {cab 2436    =/= wne 2644   A.wral 2795   E.wrex 2796    \ cdif 3425    C_ wss 3428   (/)c0 3737   {csn 3977   U_ciun 4271   suc csuc 4821   dom cdm 4940    Fn wfn 5513   ` cfv 5518   omcom 6578   1oc1o 7015    predc-bnj14 31978    FrSe w-bnj15 31982    trClc-bnj18 31984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-reg 7910  ax-inf2 7950
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-om 6579  df-1o 7022  df-bnj17 31977  df-bnj14 31979  df-bnj13 31981  df-bnj15 31983  df-bnj18 31985
This theorem is referenced by:  bnj1137  32288  bnj1136  32290  bnj1175  32297  bnj1177  32299  bnj1413  32328  bnj1408  32329  bnj1417  32334  bnj1442  32342  bnj1452  32345
  Copyright terms: Public domain W3C validator