Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj900 Structured version   Unicode version

Theorem bnj900 33715
Description: Technical lemma for bnj69 33794. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj900.3  |-  D  =  ( om  \  { (/)
} )
bnj900.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj900  |-  ( f  e.  B  ->  (/)  e.  dom  f )
Distinct variable group:    f, n
Allowed substitution hints:    ph( f, n)    ps( f, n)    B( f, n)    D( f, n)

Proof of Theorem bnj900
StepHypRef Expression
1 bnj900.4 . . . . . 6  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
21bnj1436 33626 . . . . 5  |-  ( f  e.  B  ->  E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) )
3 simp1 997 . . . . . 6  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  ->  f  Fn  n )
43reximi 2911 . . . . 5  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  ->  E. n  e.  D  f  Fn  n )
5 fndm 5670 . . . . . 6  |-  ( f  Fn  n  ->  dom  f  =  n )
65reximi 2911 . . . . 5  |-  ( E. n  e.  D  f  Fn  n  ->  E. n  e.  D  dom  f  =  n )
72, 4, 63syl 20 . . . 4  |-  ( f  e.  B  ->  E. n  e.  D  dom  f  =  n )
87bnj1196 33581 . . 3  |-  ( f  e.  B  ->  E. n
( n  e.  D  /\  dom  f  =  n ) )
9 nfre1 2904 . . . . . . 7  |-  F/ n E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps )
109nfab 2609 . . . . . 6  |-  F/_ n { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
111, 10nfcxfr 2603 . . . . 5  |-  F/_ n B
1211nfcri 2598 . . . 4  |-  F/ n  f  e.  B
131219.37 1952 . . 3  |-  ( E. n ( f  e.  B  ->  ( n  e.  D  /\  dom  f  =  n ) )  <->  ( f  e.  B  ->  E. n
( n  e.  D  /\  dom  f  =  n ) ) )
148, 13mpbir 209 . 2  |-  E. n
( f  e.  B  ->  ( n  e.  D  /\  dom  f  =  n ) )
15 nfv 1694 . . . 4  |-  F/ n (/) 
e.  dom  f
1612, 15nfim 1906 . . 3  |-  F/ n
( f  e.  B  -> 
(/)  e.  dom  f )
17 bnj900.3 . . . . . 6  |-  D  =  ( om  \  { (/)
} )
1817bnj529 33526 . . . . 5  |-  ( n  e.  D  ->  (/)  e.  n
)
19 eleq2 2516 . . . . . 6  |-  ( dom  f  =  n  -> 
( (/)  e.  dom  f  <->  (/)  e.  n ) )
2019biimparc 487 . . . . 5  |-  ( (
(/)  e.  n  /\  dom  f  =  n
)  ->  (/)  e.  dom  f )
2118, 20sylan 471 . . . 4  |-  ( ( n  e.  D  /\  dom  f  =  n
)  ->  (/)  e.  dom  f )
2221imim2i 14 . . 3  |-  ( ( f  e.  B  -> 
( n  e.  D  /\  dom  f  =  n ) )  ->  (
f  e.  B  ->  (/) 
e.  dom  f )
)
2316, 22exlimi 1898 . 2  |-  ( E. n ( f  e.  B  ->  ( n  e.  D  /\  dom  f  =  n ) )  -> 
( f  e.  B  -> 
(/)  e.  dom  f ) )
2414, 23ax-mp 5 1  |-  ( f  e.  B  ->  (/)  e.  dom  f )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383   E.wex 1599    e. wcel 1804   {cab 2428   E.wrex 2794    \ cdif 3458   (/)c0 3770   {csn 4014   dom cdm 4989    Fn wfn 5573   omcom 6685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-fn 5581  df-om 6686
This theorem is referenced by:  bnj906  33716
  Copyright terms: Public domain W3C validator