Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj893 Structured version   Visualization version   Unicode version

Theorem bnj893 29811
Description: Property of  trCl. Under certain conditions, the transitive closure of  X in  A by  R is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj893  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )

Proof of Theorem bnj893
Dummy variables  f 
g  i  n  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 244 . . 3  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 biid 244 . . 3  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
3 eqid 2471 . . 3  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
4 eqid 2471 . . 3  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
51, 2, 3, 4bnj882 29809 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
6 vex 3034 . . . . . . . . . . 11  |-  g  e. 
_V
7 fveq1 5878 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  (/) )  =  ( g `  (/) ) )
87eqeq1d 2473 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
) )
96, 8sbcie 3290 . . . . . . . . . 10  |-  ( [. g  /  f ]. (
f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
109bicomi 207 . . . . . . . . 9  |-  ( ( g `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. g  /  f ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
11 fveq1 5878 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (
f `  suc  i )  =  ( g `  suc  i ) )
12 fveq1 5878 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
f `  i )  =  ( g `  i ) )
1312iuneq1d 4294 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) )
1411, 13eqeq12d 2486 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
1514imbi2d 323 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  i  e.  n  ->  ( g `  suc  i
)  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) ) ) )
1615ralbidv 2829 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) ) )
176, 16sbcie 3290 . . . . . . . . . 10  |-  ( [. g  /  f ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
1817bicomi 207 . . . . . . . . 9  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  [. g  / 
f ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
194, 10, 18bnj873 29807 . . . . . . . 8  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }
2019eleq2i 2541 . . . . . . 7  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  <->  f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } )
2120anbi1i 709 . . . . . 6  |-  ( ( f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) )  <->  ( f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) ) )
2221rexbii2 2879 . . . . 5  |-  ( E. f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i )  <->  E. f  e.  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) )
2322abbii 2587 . . . 4  |-  { w  |  E. f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }  =  { w  |  E. f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
24 df-iun 4271 . . . 4  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
25 df-iun 4271 . . . 4  |-  U_ f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
2623, 24, 253eqtr4i 2503 . . 3  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  = 
U_ f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
27 biid 244 . . . . 5  |-  ( ( g `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
28 biid 244 . . . . 5  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
29 eqid 2471 . . . . 5  |-  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  =  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }
30 biid 244 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  ( om  \  { (/) } ) )  <-> 
( R  FrSe  A  /\  X  e.  A  /\  n  e.  ( om  \  { (/) } ) ) )
31 biid 244 . . . . 5  |-  ( ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) )
32 biid 244 . . . . 5  |-  ( [. z  /  g ]. (
g `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. z  /  g ]. ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
33 biid 244 . . . . 5  |-  ( [. z  /  g ]. A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  [. z  / 
g ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
34 biid 244 . . . . 5  |-  ( [. z  /  g ]. (
g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )  <->  [. z  /  g ]. ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) )
35 biid 244 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  <->  ( R  FrSe  A  /\  X  e.  A )
)
3627, 28, 3, 29, 30, 31, 32, 33, 34, 35bnj849 29808 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  e.  _V )
37 vex 3034 . . . . . . 7  |-  f  e. 
_V
3837dmex 6745 . . . . . 6  |-  dom  f  e.  _V
39 fvex 5889 . . . . . 6  |-  ( f `
 i )  e. 
_V
4038, 39iunex 6792 . . . . 5  |-  U_ i  e.  dom  f ( f `
 i )  e. 
_V
4140rgenw 2768 . . . 4  |-  A. f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V
42 iunexg 6788 . . . 4  |-  ( ( { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  e.  _V  /\  A. f  e.  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )  ->  U_ f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
4336, 41, 42sylancl 675 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
4426, 43syl5eqel 2553 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
455, 44syl5eqel 2553 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457   A.wral 2756   E.wrex 2757   _Vcvv 3031   [.wsbc 3255    \ cdif 3387   (/)c0 3722   {csn 3959   U_ciun 4269   dom cdm 4839   suc csuc 5432    Fn wfn 5584   ` cfv 5589   omcom 6711    predc-bnj14 29565    FrSe w-bnj15 29569    trClc-bnj18 29571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-reg 8125  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-1o 7200  df-bnj17 29564  df-bnj14 29566  df-bnj13 29568  df-bnj15 29570  df-bnj18 29572
This theorem is referenced by:  bnj1125  29873  bnj1136  29878  bnj1177  29887  bnj1413  29916  bnj1452  29933
  Copyright terms: Public domain W3C validator