Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj864 Structured version   Unicode version

Theorem bnj864 29741
Description: Technical lemma for bnj69 29827. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj864.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj864.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj864.3  |-  D  =  ( om  \  { (/)
} )
bnj864.4  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
bnj864.5  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
Assertion
Ref Expression
bnj864  |-  ( ch 
->  E! f th )
Distinct variable groups:    A, f,
i, n, y    D, f, i, n    R, f, i, n, y    f, X, n
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    ch( y, f, i, n)    th( y,
f, i, n)    D( y)    X( y, i)

Proof of Theorem bnj864
StepHypRef Expression
1 bnj864.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj864.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj864.3 . . . . 5  |-  D  =  ( om  \  { (/)
} )
41, 2, 3bnj852 29740 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) )
5 df-ral 2776 . . . . . 6  |-  ( A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps )  <->  A. n ( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
65imbi2i 313 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )
)  <->  ( ( R 
FrSe  A  /\  X  e.  A )  ->  A. n
( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) ) )
7 19.21v 1779 . . . . 5  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n
( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) ) )
8 impexp 447 . . . . . . 7  |-  ( ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) ) )
9 df-3an 984 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D ) )
109bicomi 205 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D ) )
1110imbi1i 326 . . . . . . 7  |-  ( ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
128, 11bitr3i 254 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  ( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps )
) )  <->  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
1312albii 1685 . . . . 5  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )  <->  A. n
( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
146, 7, 133bitr2i 276 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )
)  <->  A. n ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) )
154, 14mpbi 211 . . 3  |-  A. n
( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
)
1615spi 1919 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) )
17 bnj864.4 . 2  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
18 bnj864.5 . . 3  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
1918eubii 2291 . 2  |-  ( E! f th  <->  E! f
( f  Fn  n  /\  ph  /\  ps )
)
2016, 17, 193imtr4i 269 1  |-  ( ch 
->  E! f th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1872   E!weu 2269   A.wral 2771    \ cdif 3433   (/)c0 3761   {csn 3998   U_ciun 4299   suc csuc 5444    Fn wfn 5596   ` cfv 5601   omcom 6706    predc-bnj14 29501    FrSe w-bnj15 29505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-reg 8116  ax-inf2 8155
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-1o 7193  df-bnj17 29500  df-bnj14 29502  df-bnj13 29504  df-bnj15 29506
This theorem is referenced by:  bnj849  29744
  Copyright terms: Public domain W3C validator