Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj852 Structured version   Unicode version

Theorem bnj852 33275
Description: Technical lemma for bnj69 33362. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj852.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj852.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj852.3  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj852  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) )
Distinct variable groups:    A, f,
i, n, y    D, f, i, n    R, f, i, n, y    f, X, n
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    D( y)    X( y, i)

Proof of Theorem bnj852
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 3124 . . . . . 6  |-  ( X  e.  A  ->  E. x  x  =  X )
21adantl 466 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. x  x  =  X )
32ancri 552 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  ( E. x  x  =  X  /\  ( R  FrSe  A  /\  X  e.  A ) ) )
43bnj534 33092 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. x ( x  =  X  /\  ( R  FrSe  A  /\  X  e.  A ) ) )
5 eleq1 2539 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  A  <->  X  e.  A ) )
65anbi2d 703 . . . . . 6  |-  ( x  =  X  ->  (
( R  FrSe  A  /\  x  e.  A
)  <->  ( R  FrSe  A  /\  X  e.  A
) ) )
76biimpar 485 . . . . 5  |-  ( ( x  =  X  /\  ( R  FrSe  A  /\  X  e.  A )
)  ->  ( R  FrSe  A  /\  x  e.  A ) )
8 biid 236 . . . . . . . 8  |-  ( A. z  e.  D  (
z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )  <->  A. z  e.  D  ( z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) ) )
9 bnj852.3 . . . . . . . . 9  |-  D  =  ( om  \  { (/)
} )
10 omex 8061 . . . . . . . . . 10  |-  om  e.  _V
11 difexg 4595 . . . . . . . . . 10  |-  ( om  e.  _V  ->  ( om  \  { (/) } )  e.  _V )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( om 
\  { (/) } )  e.  _V
139, 12eqeltri 2551 . . . . . . . 8  |-  D  e. 
_V
14 zfregfr 8030 . . . . . . . 8  |-  _E  Fr  D
158, 13, 14bnj157 33213 . . . . . . 7  |-  ( A. n  e.  D  ( A. z  e.  D  ( z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )  ->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) ) )  ->  A. n  e.  D  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )
16 biid 236 . . . . . . . . . 10  |-  ( ( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( f `  (/) )  = 
pred ( x ,  A ,  R ) )
17 bnj852.2 . . . . . . . . . 10  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
18 biid 236 . . . . . . . . . 10  |-  ( ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) )  <-> 
( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )
1916, 17, 9, 18, 8bnj153 33234 . . . . . . . . 9  |-  ( n  =  1o  ->  (
( n  e.  D  /\  A. z  e.  D  ( z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) ) )  ->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) ) )
2016, 17, 9, 18, 8bnj601 33274 . . . . . . . . 9  |-  ( n  =/=  1o  ->  (
( n  e.  D  /\  A. z  e.  D  ( z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) ) )  ->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) ) )
2119, 20pm2.61ine 2780 . . . . . . . 8  |-  ( ( n  e.  D  /\  A. z  e.  D  ( z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) ) )  ->  (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )
2221ex 434 . . . . . . 7  |-  ( n  e.  D  ->  ( A. z  e.  D  ( z  _E  n  ->  [. z  /  n ]. ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )  ->  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) ) ) )
2315, 22mprg 2827 . . . . . 6  |-  A. n  e.  D  ( ( R  FrSe  A  /\  x  e.  A )  ->  E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) )
24 r19.21v 2869 . . . . . 6  |-  ( A. n  e.  D  (
( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) )  <-> 
( ( R  FrSe  A  /\  x  e.  A
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) ) )
2523, 24mpbi 208 . . . . 5  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  A. n  e.  D  E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) )
267, 25syl 16 . . . 4  |-  ( ( x  =  X  /\  ( R  FrSe  A  /\  X  e.  A )
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps ) )
27 bnj602 33269 . . . . . . . . . 10  |-  ( x  =  X  ->  pred (
x ,  A ,  R )  =  pred ( X ,  A ,  R ) )
2827eqeq2d 2481 . . . . . . . . 9  |-  ( x  =  X  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( f `  (/) )  = 
pred ( X ,  A ,  R )
) )
29 bnj852.1 . . . . . . . . 9  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
3028, 29syl6bbr 263 . . . . . . . 8  |-  ( x  =  X  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <->  ph ) )
31303anbi2d 1304 . . . . . . 7  |-  ( x  =  X  ->  (
( f  Fn  n  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps )  <->  ( f  Fn  n  /\  ph  /\  ps ) ) )
3231eubidv 2298 . . . . . 6  |-  ( x  =  X  ->  ( E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) 
<->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) )
3332ralbidv 2903 . . . . 5  |-  ( x  =  X  ->  ( A. n  e.  D  E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) 
<-> 
A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
3433adantr 465 . . . 4  |-  ( ( x  =  X  /\  ( R  FrSe  A  /\  X  e.  A )
)  ->  ( A. n  e.  D  E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( x ,  A ,  R )  /\  ps ) 
<-> 
A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
3526, 34mpbid 210 . . 3  |-  ( ( x  =  X  /\  ( R  FrSe  A  /\  X  e.  A )
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )
)
364, 35bnj593 33098 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. x A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )
)
3736bnj937 33126 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   E!weu 2275   A.wral 2814   _Vcvv 3113   [.wsbc 3331    \ cdif 3473   (/)c0 3785   {csn 4027   U_ciun 4325   class class class wbr 4447    _E cep 4789   suc csuc 4880    Fn wfn 5583   ` cfv 5588   omcom 6685   1oc1o 7124    predc-bnj14 33037    FrSe w-bnj15 33041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-reg 8019  ax-inf2 8059
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6686  df-1o 7131  df-bnj17 33036  df-bnj14 33038  df-bnj13 33040  df-bnj15 33042
This theorem is referenced by:  bnj864  33276  bnj865  33277  bnj906  33284
  Copyright terms: Public domain W3C validator