Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj849 Structured version   Unicode version

Theorem bnj849 29323
Description: Technical lemma for bnj69 29406. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj849.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj849.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj849.3  |-  D  =  ( om  \  { (/)
} )
bnj849.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj849.5  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
bnj849.6  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj849.7  |-  ( ph'  <->  [. g  /  f ]. ph )
bnj849.8  |-  ( ps'  <->  [. g  /  f ]. ps )
bnj849.9  |-  ( th'  <->  [. g  / 
f ]. th )
bnj849.10  |-  ( ta  <->  ( R  FrSe  A  /\  X  e.  A )
)
Assertion
Ref Expression
bnj849  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Distinct variable groups:    A, f,
i, n, y    B, g    D, f, g, n    D, i    R, f, i, n, y    f, X, n    ch, f, g    ph, g    ps, g    ta, g, n    th, g
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    ch( y, i, n)    th( y,
f, i, n)    ta( y, f, i)    A( g)    B( y, f, i, n)    D( y)    R( g)    X( y, g, i)    ph'( y, f, g, i, n)    ps'( y, f, g, i, n)    th'( y, f, g, i, n)

Proof of Theorem bnj849
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj849.10 . 2  |-  ( ta  <->  ( R  FrSe  A  /\  X  e.  A )
)
2 bnj849.1 . . . 4  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
3 bnj849.2 . . . 4  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 bnj849.3 . . . 4  |-  D  =  ( om  \  { (/)
} )
5 bnj849.5 . . . 4  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
6 bnj849.6 . . . 4  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
72, 3, 4, 5, 6bnj865 29321 . . 3  |-  E. w A. n ( ch  ->  E. f  e.  w  th )
8 bnj849.4 . . . . . . . 8  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
9 bnj849.7 . . . . . . . 8  |-  ( ph'  <->  [. g  /  f ]. ph )
10 bnj849.8 . . . . . . . 8  |-  ( ps'  <->  [. g  /  f ]. ps )
118, 9, 10bnj873 29322 . . . . . . 7  |-  B  =  { g  |  E. n  e.  D  (
g  Fn  n  /\  ph' 
/\  ps' ) }
12 df-rex 2762 . . . . . . . . 9  |-  ( E. n  e.  D  ( g  Fn  n  /\  ph' 
/\  ps' )  <->  E. n
( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )
13 19.29 1706 . . . . . . . . . . 11  |-  ( ( A. n ( ch 
->  E. f  e.  w  th )  /\  E. n
( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  E. n ( ( ch  ->  E. f  e.  w  th )  /\  ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) ) )
14 an12 800 . . . . . . . . . . . . 13  |-  ( ( ( ch  ->  E. f  e.  w  th )  /\  ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  <-> 
( n  e.  D  /\  ( ( ch  ->  E. f  e.  w  th )  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) ) )
15 df-3an 978 . . . . . . . . . . . . . . . 16  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D ) )
161anbi1i 695 . . . . . . . . . . . . . . . 16  |-  ( ( ta  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  n  e.  D ) )
1715, 5, 163bitr4i 279 . . . . . . . . . . . . . . 15  |-  ( ch  <->  ( ta  /\  n  e.  D ) )
18 id 23 . . . . . . . . . . . . . . . . 17  |-  ( ch 
->  ch )
19 bnj849.9 . . . . . . . . . . . . . . . . . . . 20  |-  ( th'  <->  [. g  / 
f ]. th )
206, 9, 10, 19bnj581 29306 . . . . . . . . . . . . . . . . . . . 20  |-  ( th'  <->  ( g  Fn  n  /\  ph'  /\  ps' ) )
2119, 20bitr3i 253 . . . . . . . . . . . . . . . . . . 19  |-  ( [. g  /  f ]. th  <->  ( g  Fn  n  /\  ph' 
/\  ps' ) )
222, 3, 4, 5, 6bnj864 29320 . . . . . . . . . . . . . . . . . . . 20  |-  ( ch 
->  E! f th )
23 df-rex 2762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. f  e.  w  th  <->  E. f ( f  e.  w  /\  th )
)
24 exancom 1694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. f ( f  e.  w  /\  th )  <->  E. f ( th  /\  f  e.  w )
)
2523, 24sylbb 199 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. f  e.  w  th  ->  E. f ( th 
/\  f  e.  w
) )
26 nfeu1 2252 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f E! f th
27 nfe1 1866 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f E. f ( th 
/\  f  e.  w
)
2826, 27nfan 1958 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ f ( E! f th 
/\  E. f ( th 
/\  f  e.  w
) )
29 nfsbc1v 3299 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f
[. g  /  f ]. th
30 nfv 1730 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f  g  e.  w
3129, 30nfim 1950 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ f ( [. g  / 
f ]. th  ->  g  e.  w )
3228, 31nfim 1950 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ f ( ( E! f th  /\  E. f
( th  /\  f  e.  w ) )  -> 
( [. g  /  f ]. th  ->  g  e.  w ) )
33 sbceq1a 3290 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  g  ->  ( th 
<-> 
[. g  /  f ]. th ) )
34 elequ1 1847 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  g  ->  (
f  e.  w  <->  g  e.  w ) )
3533, 34imbi12d 320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  g  ->  (
( th  ->  f  e.  w )  <->  ( [. g  /  f ]. th  ->  g  e.  w ) ) )
3635imbi2d 316 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  g  ->  (
( ( E! f th  /\  E. f
( th  /\  f  e.  w ) )  -> 
( th  ->  f  e.  w ) )  <->  ( ( E! f th  /\  E. f ( th  /\  f  e.  w )
)  ->  ( [. g  /  f ]. th  ->  g  e.  w ) ) ) )
37 eupick 2311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E! f th  /\  E. f ( th  /\  f  e.  w )
)  ->  ( th  ->  f  e.  w ) )
3832, 36, 37chvar 2042 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E! f th  /\  E. f ( th  /\  f  e.  w )
)  ->  ( [. g  /  f ]. th  ->  g  e.  w ) )
3922, 25, 38syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ch  /\  E. f  e.  w  th )  ->  ( [. g  / 
f ]. th  ->  g  e.  w ) )
4021, 39syl5bir 220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ch  /\  E. f  e.  w  th )  ->  ( ( g  Fn  n  /\  ph'  /\  ps' )  -> 
g  e.  w ) )
4140ex 434 . . . . . . . . . . . . . . . . 17  |-  ( ch 
->  ( E. f  e.  w  th  ->  (
( g  Fn  n  /\  ph'  /\  ps' )  ->  g  e.  w ) ) )
4218, 41embantd 55 . . . . . . . . . . . . . . . 16  |-  ( ch 
->  ( ( ch  ->  E. f  e.  w  th )  ->  ( ( g  Fn  n  /\  ph'  /\  ps' )  -> 
g  e.  w ) ) )
4342impd 431 . . . . . . . . . . . . . . 15  |-  ( ch 
->  ( ( ( ch 
->  E. f  e.  w  th )  /\  (
g  Fn  n  /\  ph' 
/\  ps' ) )  -> 
g  e.  w ) )
4417, 43sylbir 215 . . . . . . . . . . . . . 14  |-  ( ( ta  /\  n  e.  D )  ->  (
( ( ch  ->  E. f  e.  w  th )  /\  ( g  Fn  n  /\  ph'  /\  ps' ) )  ->  g  e.  w
) )
4544expimpd 603 . . . . . . . . . . . . 13  |-  ( ta 
->  ( ( n  e.  D  /\  ( ( ch  ->  E. f  e.  w  th )  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  g  e.  w
) )
4614, 45syl5bi 219 . . . . . . . . . . . 12  |-  ( ta 
->  ( ( ( ch 
->  E. f  e.  w  th )  /\  (
n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  g  e.  w
) )
4746exlimdv 1747 . . . . . . . . . . 11  |-  ( ta 
->  ( E. n ( ( ch  ->  E. f  e.  w  th )  /\  ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  g  e.  w
) )
4813, 47syl5 32 . . . . . . . . . 10  |-  ( ta 
->  ( ( A. n
( ch  ->  E. f  e.  w  th )  /\  E. n ( n  e.  D  /\  (
g  Fn  n  /\  ph' 
/\  ps' ) ) )  ->  g  e.  w
) )
4948expdimp 437 . . . . . . . . 9  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  ( E. n ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) )  ->  g  e.  w
) )
5012, 49syl5bi 219 . . . . . . . 8  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  ( E. n  e.  D  (
g  Fn  n  /\  ph' 
/\  ps' )  ->  g  e.  w ) )
5150abssdv 3515 . . . . . . 7  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  { g  |  E. n  e.  D  ( g  Fn  n  /\  ph'  /\  ps' ) }  C_  w )
5211, 51syl5eqss 3488 . . . . . 6  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  B  C_  w
)
53 vex 3064 . . . . . . 7  |-  w  e. 
_V
5453ssex 4540 . . . . . 6  |-  ( B 
C_  w  ->  B  e.  _V )
5552, 54syl 17 . . . . 5  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  B  e.  _V )
5655ex 434 . . . 4  |-  ( ta 
->  ( A. n ( ch  ->  E. f  e.  w  th )  ->  B  e.  _V )
)
5756exlimdv 1747 . . 3  |-  ( ta 
->  ( E. w A. n ( ch  ->  E. f  e.  w  th )  ->  B  e.  _V ) )
587, 57mpi 21 . 2  |-  ( ta 
->  B  e.  _V )
591, 58sylbir 215 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976   A.wal 1405    = wceq 1407   E.wex 1635    e. wcel 1844   E!weu 2240   {cab 2389   A.wral 2756   E.wrex 2757   _Vcvv 3061   [.wsbc 3279    \ cdif 3413    C_ wss 3416   (/)c0 3740   {csn 3974   U_ciun 4273   suc csuc 5414    Fn wfn 5566   ` cfv 5571   omcom 6685    predc-bnj14 29080    FrSe w-bnj15 29084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-reg 8054  ax-inf2 8093
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-om 6686  df-1o 7169  df-bnj17 29079  df-bnj14 29081  df-bnj13 29083  df-bnj15 29085
This theorem is referenced by:  bnj893  29326
  Copyright terms: Public domain W3C validator