Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj601 Structured version   Visualization version   Unicode version

Theorem bnj601 29781
Description: Technical lemma for bnj852 29782. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj601.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj601.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj601.3  |-  D  =  ( om  \  { (/)
} )
bnj601.4  |-  ( ch  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
bnj601.5  |-  ( th  <->  A. m  e.  D  ( m  _E  n  ->  [. m  /  n ]. ch ) )
Assertion
Ref Expression
bnj601  |-  ( n  =/=  1o  ->  (
( n  e.  D  /\  th )  ->  ch ) )
Distinct variable groups:    A, f,
i, m, n, y    D, f, i    R, f, i, m, n, y   
x, f, m, n    ph, i, m    ps, m
Allowed substitution hints:    ph( x, y, f, n)    ps( x, y, f, i, n)    ch( x, y, f, i, m, n)    th( x, y, f, i, m, n)    A( x)    D( x, y, m, n)    R( x)

Proof of Theorem bnj601
Dummy variables  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj601.1 . 2  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
2 bnj601.2 . 2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj601.3 . 2  |-  D  =  ( om  \  { (/)
} )
4 bnj601.4 . 2  |-  ( ch  <->  ( ( R  FrSe  A  /\  x  e.  A
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
5 bnj601.5 . 2  |-  ( th  <->  A. m  e.  D  ( m  _E  n  ->  [. m  /  n ]. ch ) )
6 biid 244 . 2  |-  ( [. m  /  n ]. ph  <->  [. m  /  n ]. ph )
7 biid 244 . 2  |-  ( [. m  /  n ]. ps  <->  [. m  /  n ]. ps )
8 biid 244 . 2  |-  ( [. m  /  n ]. ch  <->  [. m  /  n ]. ch )
9 bnj602 29776 . . . . . . 7  |-  ( y  =  z  ->  pred (
y ,  A ,  R )  =  pred ( z ,  A ,  R ) )
109cbviunv 4331 . . . . . 6  |-  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  =  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
1110opeq2i 4184 . . . . 5  |-  <. m ,  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
>.  =  <. m , 
U_ z  e.  ( f `  p ) 
pred ( z ,  A ,  R )
>.
1211sneqi 3991 . . . 4  |-  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. }  =  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. }
1312uneq2i 3597 . . 3  |-  ( f  u.  { <. m ,  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
>. } )  =  ( f  u.  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. } )
14 dfsbcq 3281 . . 3  |-  ( ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  =  ( f  u.  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. } )  ->  ( [. ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  /  f ]. ph  <->  [. ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } )  /  f ]. ph )
)
1513, 14ax-mp 5 . 2  |-  ( [. ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  /  f ]. ph  <->  [. ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } )  /  f ]. ph )
16 dfsbcq 3281 . . 3  |-  ( ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  =  ( f  u.  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. } )  ->  ( [. ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  /  f ]. ps  <->  [. ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } )  /  f ]. ps ) )
1713, 16ax-mp 5 . 2  |-  ( [. ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  /  f ]. ps  <->  [. ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } )  /  f ]. ps )
18 dfsbcq 3281 . . 3  |-  ( ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  =  ( f  u.  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. } )  ->  ( [. ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  /  f ]. ch  <->  [. ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } )  /  f ]. ch ) )
1913, 18ax-mp 5 . 2  |-  ( [. ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )  /  f ]. ch  <->  [. ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } )  /  f ]. ch )
2013eqcomi 2471 . 2  |-  ( f  u.  { <. m ,  U_ z  e.  ( f `  p ) 
pred ( z ,  A ,  R )
>. } )  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
21 biid 244 . 2  |-  ( ( f  Fn  m  /\  [. m  /  n ]. ph 
/\  [. m  /  n ]. ps )  <->  ( f  Fn  m  /\  [. m  /  n ]. ph  /\  [. m  /  n ]. ps ) )
22 biid 244 . 2  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
23 biid 244 . 2  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
24 biid 244 . 2  |-  ( ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i )  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
25 biid 244 . 2  |-  ( ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
)  <->  ( i  e. 
om  /\  suc  i  e.  n  /\  m  =/= 
suc  i ) )
26 eqid 2462 . 2  |-  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )
27 eqid 2462 . 2  |-  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
28 eqid 2462 . 2  |-  U_ y  e.  ( ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } ) `
 i )  pred ( y ,  A ,  R )  =  U_ y  e.  ( (
f  u.  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. } ) `  i
)  pred ( y ,  A ,  R )
29 eqid 2462 . 2  |-  U_ y  e.  ( ( f  u. 
{ <. m ,  U_ z  e.  ( f `  p )  pred (
z ,  A ,  R ) >. } ) `
 p )  pred ( y ,  A ,  R )  =  U_ y  e.  ( (
f  u.  { <. m ,  U_ z  e.  ( f `  p
)  pred ( z ,  A ,  R )
>. } ) `  p
)  pred ( y ,  A ,  R )
301, 2, 3, 4, 5, 6, 7, 8, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20bnj600 29780 1  |-  ( n  =/=  1o  ->  (
( n  e.  D  /\  th )  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   E!weu 2310    =/= wne 2633   A.wral 2749   [.wsbc 3279    \ cdif 3413    u. cun 3414   (/)c0 3743   {csn 3980   <.cop 3986   U_ciun 4292   class class class wbr 4418    _E cep 4765   suc csuc 5448    Fn wfn 5600   ` cfv 5605   omcom 6724   1oc1o 7206    /\ w-bnj17 29541    predc-bnj14 29543    FrSe w-bnj15 29547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-reg 8138
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-om 6725  df-1o 7213  df-bnj17 29542  df-bnj14 29544  df-bnj13 29546  df-bnj15 29548
This theorem is referenced by:  bnj852  29782
  Copyright terms: Public domain W3C validator