Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj60 Structured version   Unicode version

Theorem bnj60 32355
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj60.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj60.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj60.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj60.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj60  |-  ( R 
FrSe  A  ->  F  Fn  A )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f, d)

Proof of Theorem bnj60
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj60.1 . . . . 5  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj60.2 . . . . 5  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj60.3 . . . . 5  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
41, 2, 3bnj1497 32353 . . . 4  |-  A. g  e.  C  Fun  g
5 eqid 2451 . . . . . . . 8  |-  ( dom  g  i^i  dom  h
)  =  ( dom  g  i^i  dom  h
)
61, 2, 3, 5bnj1311 32317 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
763expia 1190 . . . . . 6  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  ( h  e.  C  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) ) )
87ralrimiv 2820 . . . . 5  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  A. h  e.  C  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
98ralrimiva 2822 . . . 4  |-  ( R 
FrSe  A  ->  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )
10 biid 236 . . . . 5  |-  ( A. g  e.  C  Fun  g 
<-> 
A. g  e.  C  Fun  g )
11 biid 236 . . . . 5  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  <-> 
( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  (
g  |`  ( dom  g  i^i  dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) ) )
1210, 5, 11bnj1383 32127 . . . 4  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  ->  Fun  U. C )
134, 9, 12sylancr 663 . . 3  |-  ( R 
FrSe  A  ->  Fun  U. C )
14 bnj60.4 . . . 4  |-  F  = 
U. C
1514funeqi 5538 . . 3  |-  ( Fun 
F  <->  Fun  U. C )
1613, 15sylibr 212 . 2  |-  ( R 
FrSe  A  ->  Fun  F
)
171, 2, 3, 14bnj1498 32354 . 2  |-  ( R 
FrSe  A  ->  dom  F  =  A )
1816, 17bnj1422 32133 1  |-  ( R 
FrSe  A  ->  F  Fn  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2436   A.wral 2795   E.wrex 2796    i^i cin 3427    C_ wss 3428   <.cop 3983   U.cuni 4191   dom cdm 4940    |` cres 4942   Fun wfun 5512    Fn wfn 5513   ` cfv 5518    predc-bnj14 31978    FrSe w-bnj15 31982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-reg 7910  ax-inf2 7950
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-om 6579  df-1o 7022  df-bnj17 31977  df-bnj14 31979  df-bnj13 31981  df-bnj15 31983  df-bnj18 31985  df-bnj19 31987
This theorem is referenced by:  bnj1501  32360  bnj1523  32364
  Copyright terms: Public domain W3C validator