Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj60 Structured version   Unicode version

Theorem bnj60 33825
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj60.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj60.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj60.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj60.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj60  |-  ( R 
FrSe  A  ->  F  Fn  A )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f, d)

Proof of Theorem bnj60
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj60.1 . . . . 5  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj60.2 . . . . 5  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj60.3 . . . . 5  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
41, 2, 3bnj1497 33823 . . . 4  |-  A. g  e.  C  Fun  g
5 eqid 2441 . . . . . . . 8  |-  ( dom  g  i^i  dom  h
)  =  ( dom  g  i^i  dom  h
)
61, 2, 3, 5bnj1311 33787 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
763expia 1197 . . . . . 6  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  ( h  e.  C  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) ) )
87ralrimiv 2853 . . . . 5  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  A. h  e.  C  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
98ralrimiva 2855 . . . 4  |-  ( R 
FrSe  A  ->  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )
10 biid 236 . . . . 5  |-  ( A. g  e.  C  Fun  g 
<-> 
A. g  e.  C  Fun  g )
11 biid 236 . . . . 5  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  <-> 
( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  (
g  |`  ( dom  g  i^i  dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) ) )
1210, 5, 11bnj1383 33597 . . . 4  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  ->  Fun  U. C )
134, 9, 12sylancr 663 . . 3  |-  ( R 
FrSe  A  ->  Fun  U. C )
14 bnj60.4 . . . 4  |-  F  = 
U. C
1514funeqi 5594 . . 3  |-  ( Fun 
F  <->  Fun  U. C )
1613, 15sylibr 212 . 2  |-  ( R 
FrSe  A  ->  Fun  F
)
171, 2, 3, 14bnj1498 33824 . 2  |-  ( R 
FrSe  A  ->  dom  F  =  A )
1816, 17bnj1422 33603 1  |-  ( R 
FrSe  A  ->  F  Fn  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   {cab 2426   A.wral 2791   E.wrex 2792    i^i cin 3457    C_ wss 3458   <.cop 4016   U.cuni 4230   dom cdm 4985    |` cres 4987   Fun wfun 5568    Fn wfn 5569   ` cfv 5574    predc-bnj14 33448    FrSe w-bnj15 33452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-reg 8016  ax-inf2 8056
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-om 6682  df-1o 7128  df-bnj17 33447  df-bnj14 33449  df-bnj13 33451  df-bnj15 33453  df-bnj18 33455  df-bnj19 33457
This theorem is referenced by:  bnj1501  33830  bnj1523  33834
  Copyright terms: Public domain W3C validator