Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj596 Structured version   Visualization version   Unicode version

Theorem bnj596 29628
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj596.1  |-  ( ph  ->  A. x ph )
bnj596.2  |-  ( ph  ->  E. x ps )
Assertion
Ref Expression
bnj596  |-  ( ph  ->  E. x ( ph  /\ 
ps ) )

Proof of Theorem bnj596
StepHypRef Expression
1 bnj596.2 . . 3  |-  ( ph  ->  E. x ps )
21ancli 560 . 2  |-  ( ph  ->  ( ph  /\  E. x ps ) )
3 bnj596.1 . . . 4  |-  ( ph  ->  A. x ph )
43nfi 1682 . . 3  |-  F/ x ph
5419.42 2071 . 2  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
62, 5sylibr 217 1  |-  ( ph  ->  E. x ( ph  /\ 
ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376   A.wal 1450   E.wex 1671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676
This theorem is referenced by:  bnj1275  29697  bnj1340  29707  bnj594  29795  bnj1398  29915
  Copyright terms: Public domain W3C validator