Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj594 Structured version   Visualization version   Unicode version

Theorem bnj594 29723
Description: Technical lemma for bnj852 29732. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj594.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj594.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj594.3  |-  ( ch  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj594.7  |-  D  =  ( om  \  { (/)
} )
bnj594.9  |-  ( ph'  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj594.10  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
bnj594.11  |-  ( ch'  <->  (
g  Fn  n  /\  ph' 
/\  ps' ) )
bnj594.15  |-  ( th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) ) )
bnj594.16  |-  ( [. k  /  j ]. th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  k
)  =  ( g `
 k ) ) )
bnj594.17  |-  ( ta  <->  A. k  e.  n  ( k  _E  j  ->  [. k  /  j ]. th ) )
Assertion
Ref Expression
bnj594  |-  ( ( j  e.  n  /\  ta )  ->  th )
Distinct variable groups:    A, i,
k    D, k    R, i, k    ch, k    k, ch'    f, i, k, y    g,
i, k, y    i, n, k    j, k
Allowed substitution hints:    ph( x, y, f, g, i, j, k, n)    ps( x, y, f, g, i, j, k, n)    ch( x, y, f, g, i, j, n)    th( x, y, f, g, i, j, k, n)    ta( x, y, f, g, i, j, k, n)    A( x, y, f, g, j, n)    D( x, y, f, g, i, j, n)    R( x, y, f, g, j, n)    ph'( x, y, f, g, i, j, k, n)    ps'( x, y, f, g, i, j, k, n)    ch'( x, y, f, g, i, j, n)

Proof of Theorem bnj594
StepHypRef Expression
1 bnj594.3 . . . . . . . . 9  |-  ( ch  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
21simp2bi 1024 . . . . . . . 8  |-  ( ch 
->  ph )
3 bnj594.1 . . . . . . . 8  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
42, 3sylib 200 . . . . . . 7  |-  ( ch 
->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
5 bnj594.11 . . . . . . . . 9  |-  ( ch'  <->  (
g  Fn  n  /\  ph' 
/\  ps' ) )
65simp2bi 1024 . . . . . . . 8  |-  ( ch'  ->  ph' )
7 bnj594.9 . . . . . . . 8  |-  ( ph'  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
86, 7sylib 200 . . . . . . 7  |-  ( ch'  ->  ( g `  (/) )  = 
pred ( x ,  A ,  R ) )
9 eqtr3 2472 . . . . . . 7  |-  ( ( ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ( g `  (/) )  =  pred (
x ,  A ,  R ) )  -> 
( f `  (/) )  =  ( g `  (/) ) )
104, 8, 9syl2an 480 . . . . . 6  |-  ( ( ch  /\  ch' )  -> 
( f `  (/) )  =  ( g `  (/) ) )
11103adant1 1026 . . . . 5  |-  ( ( n  e.  D  /\  ch  /\  ch' )  ->  (
f `  (/) )  =  ( g `  (/) ) )
12 fveq2 5865 . . . . . 6  |-  ( j  =  (/)  ->  ( f `
 j )  =  ( f `  (/) ) )
13 fveq2 5865 . . . . . 6  |-  ( j  =  (/)  ->  ( g `
 j )  =  ( g `  (/) ) )
1412, 13eqeq12d 2466 . . . . 5  |-  ( j  =  (/)  ->  ( ( f `  j )  =  ( g `  j )  <->  ( f `  (/) )  =  ( g `  (/) ) ) )
1511, 14syl5ibr 225 . . . 4  |-  ( j  =  (/)  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
16 bnj594.15 . . . 4  |-  ( th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) ) )
1715, 16sylibr 216 . . 3  |-  ( j  =  (/)  ->  th )
1817a1d 26 . 2  |-  ( j  =  (/)  ->  ( ( j  e.  n  /\  ta )  ->  th )
)
19 bnj253 29509 . . . . . 6  |-  ( ( n  e.  D  /\  n  e.  D  /\  ch  /\  ch' )  <->  ( (
n  e.  D  /\  n  e.  D )  /\  ch  /\  ch' ) )
20 bnj252 29508 . . . . . 6  |-  ( ( n  e.  D  /\  n  e.  D  /\  ch  /\  ch' )  <->  ( n  e.  D  /\  (
n  e.  D  /\  ch  /\  ch' ) ) )
21 anidm 650 . . . . . . 7  |-  ( ( n  e.  D  /\  n  e.  D )  <->  n  e.  D )
22213anbi1i 1199 . . . . . 6  |-  ( ( ( n  e.  D  /\  n  e.  D
)  /\  ch  /\  ch' )  <->  ( n  e.  D  /\  ch  /\  ch' ) )
2319, 20, 223bitr3i 279 . . . . 5  |-  ( ( n  e.  D  /\  ( n  e.  D  /\  ch  /\  ch' ) )  <-> 
( n  e.  D  /\  ch  /\  ch' ) )
24 df-bnj17 29492 . . . . . . . . . 10  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  <->  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D )  /\  ta ) )
25 bnj594.17 . . . . . . . . . . . 12  |-  ( ta  <->  A. k  e.  n  ( k  _E  j  ->  [. k  /  j ]. th ) )
2625bnj1095 29593 . . . . . . . . . . 11  |-  ( ta 
->  A. k ta )
2726bnj1352 29639 . . . . . . . . . 10  |-  ( ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D )  /\  ta )  ->  A. k ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D )  /\  ta ) )
2824, 27hbxfrbi 1694 . . . . . . . . 9  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  ->  A. k ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )
)
29 bnj170 29503 . . . . . . . . . . . 12  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D )  <->  ( (
j  e.  n  /\  n  e.  D )  /\  j  =/=  (/) ) )
30 bnj594.7 . . . . . . . . . . . . . . 15  |-  D  =  ( om  \  { (/)
} )
3130bnj923 29579 . . . . . . . . . . . . . 14  |-  ( n  e.  D  ->  n  e.  om )
32 elnn 6702 . . . . . . . . . . . . . 14  |-  ( ( j  e.  n  /\  n  e.  om )  ->  j  e.  om )
3331, 32sylan2 477 . . . . . . . . . . . . 13  |-  ( ( j  e.  n  /\  n  e.  D )  ->  j  e.  om )
3433anim1i 572 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D
)  /\  j  =/=  (/) )  ->  ( j  e.  om  /\  j  =/=  (/) ) )
3529, 34sylbi 199 . . . . . . . . . . 11  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  j  =/=  (/) ) )
36 nnsuc 6709 . . . . . . . . . . 11  |-  ( ( j  e.  om  /\  j  =/=  (/) )  ->  E. k  e.  om  j  =  suc  k )
37 rexex 2844 . . . . . . . . . . 11  |-  ( E. k  e.  om  j  =  suc  k  ->  E. k 
j  =  suc  k
)
3835, 36, 373syl 18 . . . . . . . . . 10  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D )  ->  E. k 
j  =  suc  k
)
3938bnj721 29567 . . . . . . . . 9  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  ->  E. k  j  =  suc  k )
4028, 39bnj596 29556 . . . . . . . 8  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  ->  E. k ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  /\  j  =  suc  k ) )
41 bnj667 29562 . . . . . . . . . . 11  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  ->  ( j  e.  n  /\  n  e.  D  /\  ta ) )
4241anim1i 572 . . . . . . . . . 10  |-  ( ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  /\  j  =  suc  k )  ->  (
( j  e.  n  /\  n  e.  D  /\  ta )  /\  j  =  suc  k ) )
43 bnj258 29513 . . . . . . . . . 10  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  <->  ( ( j  e.  n  /\  n  e.  D  /\  ta )  /\  j  =  suc  k ) )
4442, 43sylibr 216 . . . . . . . . 9  |-  ( ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  /\  j  =  suc  k )  ->  (
j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta ) )
45 df-bnj17 29492 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  <->  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ta ) )
46 bnj219 29541 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  suc  k  -> 
k  _E  j )
47463ad2ant3 1031 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  ->  k  _E  j
)
4847adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ta )  ->  k  _E  j
)
49 vex 3048 . . . . . . . . . . . . . . . . . . 19  |-  k  e. 
_V
5049bnj216 29540 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  suc  k  -> 
k  e.  j )
51 df-3an 987 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  j  /\  j  e.  n  /\  n  e.  D )  <->  ( ( k  e.  j  /\  j  e.  n
)  /\  n  e.  D ) )
52 3anrot 990 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  j  /\  j  e.  n  /\  n  e.  D )  <->  ( j  e.  n  /\  n  e.  D  /\  k  e.  j )
)
53 ancom 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( k  e.  j  /\  j  e.  n
)  /\  n  e.  D )  <->  ( n  e.  D  /\  (
k  e.  j  /\  j  e.  n )
) )
5451, 52, 533bitr3i 279 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  n  /\  n  e.  D  /\  k  e.  j )  <->  ( n  e.  D  /\  ( k  e.  j  /\  j  e.  n
) ) )
55 eldifi 3555 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( om  \  { (/)
} )  ->  n  e.  om )
5655, 30eleq2s 2547 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  D  ->  n  e.  om )
57 nnord 6700 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  om  ->  Ord  n )
58 ordtr1 5466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Ord  n  ->  ( (
k  e.  j  /\  j  e.  n )  ->  k  e.  n ) )
5956, 57, 583syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  D  ->  (
( k  e.  j  /\  j  e.  n
)  ->  k  e.  n ) )
6059imp 431 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  D  /\  ( k  e.  j  /\  j  e.  n
) )  ->  k  e.  n )
6154, 60sylbi 199 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  n  /\  n  e.  D  /\  k  e.  j )  ->  k  e.  n )
6250, 61syl3an3 1303 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  ->  k  e.  n
)
63 rsp 2754 . . . . . . . . . . . . . . . . . 18  |-  ( A. k  e.  n  (
k  _E  j  ->  [. k  /  j ]. th )  ->  (
k  e.  n  -> 
( k  _E  j  ->  [. k  /  j ]. th ) ) )
6425, 63sylbi 199 . . . . . . . . . . . . . . . . 17  |-  ( ta 
->  ( k  e.  n  ->  ( k  _E  j  ->  [. k  /  j ]. th ) ) )
6562, 64mpan9 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ta )  ->  ( k  _E  j  ->  [. k  / 
j ]. th ) )
6648, 65mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ta )  ->  [. k  /  j ]. th )
6745, 66sylbi 199 . . . . . . . . . . . . . 14  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  ->  [. k  /  j ]. th )
6867anim1i 572 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( [. k  /  j ]. th  /\  ( n  e.  D  /\  ch  /\  ch' ) ) )
69 bnj252 29508 . . . . . . . . . . . . 13  |-  ( (
[. k  /  j ]. th  /\  n  e.  D  /\  ch  /\  ch' )  <->  ( [. k  /  j ]. th  /\  ( n  e.  D  /\  ch  /\  ch' ) ) )
7068, 69sylibr 216 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( [. k  /  j ]. th  /\  n  e.  D  /\  ch  /\  ch' ) )
71 bnj446 29522 . . . . . . . . . . . . 13  |-  ( (
[. k  /  j ]. th  /\  n  e.  D  /\  ch  /\  ch' )  <->  ( ( n  e.  D  /\  ch  /\  ch' )  /\  [. k  /  j ]. th ) )
72 bnj594.16 . . . . . . . . . . . . . 14  |-  ( [. k  /  j ]. th  <->  ( ( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  k
)  =  ( g `
 k ) ) )
73 pm3.35 591 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  D  /\  ch  /\  ch' )  /\  ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( f `  k )  =  ( g `  k ) ) )  ->  (
f `  k )  =  ( g `  k ) )
7472, 73sylan2b 478 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  D  /\  ch  /\  ch' )  /\  [. k  /  j ]. th )  ->  ( f `
 k )  =  ( g `  k
) )
7571, 74sylbi 199 . . . . . . . . . . . 12  |-  ( (
[. k  /  j ]. th  /\  n  e.  D  /\  ch  /\  ch' )  ->  ( f `  k )  =  ( g `  k ) )
76 iuneq1 4292 . . . . . . . . . . . 12  |-  ( ( f `  k )  =  ( g `  k )  ->  U_ y  e.  ( f `  k
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  k
)  pred ( y ,  A ,  R ) )
7770, 75, 763syl 18 . . . . . . . . . . 11  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  U_ y  e.  ( f `  k ) 
pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  k
)  pred ( y ,  A ,  R ) )
78 bnj658 29561 . . . . . . . . . . . . 13  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  ->  ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k ) )
791simp3bi 1025 . . . . . . . . . . . . . 14  |-  ( ch 
->  ps )
805simp3bi 1025 . . . . . . . . . . . . . 14  |-  ( ch'  ->  ps' )
8179, 80bnj240 29504 . . . . . . . . . . . . 13  |-  ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( ps  /\  ps' ) )
8278, 81anim12i 570 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ( ps  /\  ps' ) ) )
83 simpl 459 . . . . . . . . . . . . 13  |-  ( ( ps  /\  ps' )  ->  ps )
8483anim2i 573 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ( ps  /\  ps' ) )  -> 
( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ps ) )
85 simp3 1010 . . . . . . . . . . . . . 14  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  ->  j  =  suc  k )
8685anim1i 572 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ps )  ->  ( j  =  suc  k  /\  ps ) )
87 simpl1 1011 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  (
j  =  suc  k  /\  ps ) )  -> 
j  e.  n )
88 df-3an 987 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  <-> 
( ( j  e.  n  /\  n  e.  D )  /\  j  =  suc  k ) )
89 ancom 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  n  /\  n  e.  D
)  /\  j  =  suc  k )  <->  ( j  =  suc  k  /\  (
j  e.  n  /\  n  e.  D )
) )
9088, 89bitri 253 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  <-> 
( j  =  suc  k  /\  ( j  e.  n  /\  n  e.  D ) ) )
91 elnn 6702 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  j  /\  j  e.  om )  ->  k  e.  om )
9250, 33, 91syl2an 480 . . . . . . . . . . . . . . . 16  |-  ( ( j  =  suc  k  /\  ( j  e.  n  /\  n  e.  D
) )  ->  k  e.  om )
9390, 92sylbi 199 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  ->  k  e.  om )
94 bnj594.2 . . . . . . . . . . . . . . . . 17  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
9594bnj589 29720 . . . . . . . . . . . . . . . 16  |-  ( ps  <->  A. k  e.  om  ( suc  k  e.  n  ->  ( f `  suc  k )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) ) )
9695bnj590 29721 . . . . . . . . . . . . . . 15  |-  ( ( j  =  suc  k  /\  ps )  ->  (
k  e.  om  ->  ( j  e.  n  -> 
( f `  j
)  =  U_ y  e.  ( f `  k
)  pred ( y ,  A ,  R ) ) ) )
9793, 96mpan9 472 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  (
j  =  suc  k  /\  ps ) )  -> 
( j  e.  n  ->  ( f `  j
)  =  U_ y  e.  ( f `  k
)  pred ( y ,  A ,  R ) ) )
9887, 97mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  (
j  =  suc  k  /\  ps ) )  -> 
( f `  j
)  =  U_ y  e.  ( f `  k
)  pred ( y ,  A ,  R ) )
9986, 98syldan 473 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ps )  ->  ( f `  j )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) )
10082, 84, 993syl 18 . . . . . . . . . . 11  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( f `  j )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) )
101 simpr 463 . . . . . . . . . . . . 13  |-  ( ( ps  /\  ps' )  ->  ps' )
102101anim2i 573 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ( ps  /\  ps' ) )  -> 
( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ps' ) )
10385anim1i 572 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ps' )  -> 
( j  =  suc  k  /\  ps' ) )
104 simpl1 1011 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  (
j  =  suc  k  /\  ps' ) )  ->  j  e.  n )
105 bnj594.10 . . . . . . . . . . . . . . . . 17  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
106105bnj589 29720 . . . . . . . . . . . . . . . 16  |-  ( ps'  <->  A. k  e.  om  ( suc  k  e.  n  ->  ( g `  suc  k )  =  U_ y  e.  ( g `  k )  pred (
y ,  A ,  R ) ) )
107106bnj590 29721 . . . . . . . . . . . . . . 15  |-  ( ( j  =  suc  k  /\  ps' )  ->  ( k  e.  om  ->  (
j  e.  n  -> 
( g `  j
)  =  U_ y  e.  ( g `  k
)  pred ( y ,  A ,  R ) ) ) )
10893, 107mpan9 472 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  (
j  =  suc  k  /\  ps' ) )  ->  (
j  e.  n  -> 
( g `  j
)  =  U_ y  e.  ( g `  k
)  pred ( y ,  A ,  R ) ) )
109104, 108mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  (
j  =  suc  k  /\  ps' ) )  ->  (
g `  j )  =  U_ y  e.  ( g `  k ) 
pred ( y ,  A ,  R ) )
110103, 109syldan 473 . . . . . . . . . . . 12  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k )  /\  ps' )  -> 
( g `  j
)  =  U_ y  e.  ( g `  k
)  pred ( y ,  A ,  R ) )
11182, 102, 1103syl 18 . . . . . . . . . . 11  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( g `  j )  =  U_ y  e.  ( g `  k )  pred (
y ,  A ,  R ) )
11277, 100, 1113eqtr4d 2495 . . . . . . . . . 10  |-  ( ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  ( f `  j )  =  ( g `  j ) )
113112ex 436 . . . . . . . . 9  |-  ( ( j  e.  n  /\  n  e.  D  /\  j  =  suc  k  /\  ta )  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
11444, 113syl 17 . . . . . . . 8  |-  ( ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  /\  j  =  suc  k )  ->  (
( n  e.  D  /\  ch  /\  ch' )  -> 
( f `  j
)  =  ( g `
 j ) ) )
11540, 114bnj593 29555 . . . . . . 7  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  ->  E. k ( ( n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
116 bnj258 29513 . . . . . . 7  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  n  e.  D  /\  ta )  <->  ( ( j  =/=  (/)  /\  j  e.  n  /\  ta )  /\  n  e.  D
) )
117 19.9v 1812 . . . . . . 7  |-  ( E. k ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( f `
 j )  =  ( g `  j
) )  <->  ( (
n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
118115, 116, 1173imtr3i 269 . . . . . 6  |-  ( ( ( j  =/=  (/)  /\  j  e.  n  /\  ta )  /\  n  e.  D
)  ->  ( (
n  e.  D  /\  ch  /\  ch' )  ->  (
f `  j )  =  ( g `  j ) ) )
119118expimpd 608 . . . . 5  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  ta )  ->  ( ( n  e.  D  /\  ( n  e.  D  /\  ch  /\  ch' ) )  ->  (
f `  j )  =  ( g `  j ) ) )
12023, 119syl5bir 222 . . . 4  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  ta )  ->  ( ( n  e.  D  /\  ch  /\  ch' )  ->  ( f `  j )  =  ( g `  j ) ) )
121120, 16sylibr 216 . . 3  |-  ( ( j  =/=  (/)  /\  j  e.  n  /\  ta )  ->  th )
1221213expib 1211 . 2  |-  ( j  =/=  (/)  ->  ( (
j  e.  n  /\  ta )  ->  th )
)
12318, 122pm2.61ine 2707 1  |-  ( ( j  e.  n  /\  ta )  ->  th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   [.wsbc 3267    \ cdif 3401   (/)c0 3731   {csn 3968   U_ciun 4278   class class class wbr 4402    _E cep 4743   Ord word 5422   suc csuc 5425    Fn wfn 5577   ` cfv 5582   omcom 6692    /\ w-bnj17 29491    predc-bnj14 29493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-tr 4498  df-eprel 4745  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fv 5590  df-om 6693  df-bnj17 29492
This theorem is referenced by:  bnj580  29724
  Copyright terms: Public domain W3C validator