Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj590 Structured version   Unicode version

Theorem bnj590 34111
 Description: Technical lemma for bnj852 34122. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj590.1
Assertion
Ref Expression
bnj590

Proof of Theorem bnj590
StepHypRef Expression
1 bnj590.1 . . . 4
2 rsp 2823 . . . 4
31, 2sylbi 195 . . 3
4 eleq1 2529 . . . . 5
5 fveq2 5872 . . . . . 6
65eqeq1d 2459 . . . . 5
74, 6imbi12d 320 . . . 4
87imbi2d 316 . . 3
93, 8syl5ibr 221 . 2
109imp 429 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1395   wcel 1819  wral 2807  ciun 4332   csuc 4889  cfv 5594  com 6699   c-bnj14 33883 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-iota 5557  df-fv 5602 This theorem is referenced by:  bnj594  34113
 Copyright terms: Public domain W3C validator