Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj589 Structured version   Unicode version

Theorem bnj589 34368
Description: Technical lemma for bnj852 34380. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj589.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj589  |-  ( ps  <->  A. k  e.  om  ( suc  k  e.  n  ->  ( f `  suc  k )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) ) )
Distinct variable groups:    A, i,
k    R, i, k    f,
i, k, y    i, n, k
Allowed substitution hints:    ps( y, f, i, k, n)    A( y, f, n)    R( y,
f, n)

Proof of Theorem bnj589
StepHypRef Expression
1 bnj589.1 . 2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
21bnj222 34342 1  |-  ( ps  <->  A. k  e.  om  ( suc  k  e.  n  ->  ( f `  suc  k )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1398    e. wcel 1823   A.wral 2804   U_ciun 4315   suc csuc 4869   ` cfv 5570   omcom 6673    predc-bnj14 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-suc 4873  df-iota 5534  df-fv 5578
This theorem is referenced by:  bnj594  34371  bnj1128  34447  bnj1145  34450
  Copyright terms: Public domain W3C validator