Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj581 Structured version   Unicode version

Theorem bnj581 32920
Description: Technical lemma for bnj580 32925. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Unnecessary distinct variable restrictions were removed by Andrew Salmon, 9-Jul-2011.) (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj581.3  |-  ( ch  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj581.4  |-  ( ph'  <->  [. g  /  f ]. ph )
bnj581.5  |-  ( ps'  <->  [. g  /  f ]. ps )
bnj581.6  |-  ( ch'  <->  [. g  /  f ]. ch )
Assertion
Ref Expression
bnj581  |-  ( ch'  <->  (
g  Fn  n  /\  ph' 
/\  ps' ) )
Distinct variable group:    f, n
Allowed substitution hints:    ph( f, g, n)    ps( f, g, n)    ch( f, g, n)    ph'( f, g, n)    ps'( f, g, n)    ch'( f, g, n)

Proof of Theorem bnj581
StepHypRef Expression
1 bnj581.6 . 2  |-  ( ch'  <->  [. g  /  f ]. ch )
2 bnj581.3 . . 3  |-  ( ch  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
32sbcbii 3384 . 2  |-  ( [. g  /  f ]. ch  <->  [. g  /  f ]. ( f  Fn  n  /\  ph  /\  ps )
)
4 sbc3an 3387 . . 3  |-  ( [. g  /  f ]. (
f  Fn  n  /\  ph 
/\  ps )  <->  ( [. g  /  f ]. f  Fn  n  /\  [. g  /  f ]. ph  /\  [. g  /  f ]. ps ) )
5 bnj62 32728 . . . . 5  |-  ( [. g  /  f ]. f  Fn  n  <->  g  Fn  n
)
65bicomi 202 . . . 4  |-  ( g  Fn  n  <->  [. g  / 
f ]. f  Fn  n
)
7 bnj581.4 . . . 4  |-  ( ph'  <->  [. g  /  f ]. ph )
8 bnj581.5 . . . 4  |-  ( ps'  <->  [. g  /  f ]. ps )
96, 7, 83anbi123i 1180 . . 3  |-  ( ( g  Fn  n  /\  ph' 
/\  ps' )  <->  ( [. g  /  f ]. f  Fn  n  /\  [. g  /  f ]. ph  /\  [. g  /  f ]. ps ) )
104, 9bitr4i 252 . 2  |-  ( [. g  /  f ]. (
f  Fn  n  /\  ph 
/\  ps )  <->  ( g  Fn  n  /\  ph'  /\  ps' ) )
111, 3, 103bitri 271 1  |-  ( ch'  <->  (
g  Fn  n  /\  ph' 
/\  ps' ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 968   [.wsbc 3324    Fn wfn 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-opab 4499  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-fun 5581  df-fn 5582
This theorem is referenced by:  bnj580  32925  bnj849  32937
  Copyright terms: Public domain W3C validator