Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj548 Structured version   Unicode version

Theorem bnj548 33435
Description: Technical lemma for bnj852 33459. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj548.1  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj548.2  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj548.3  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj548.4  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj548.5  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Assertion
Ref Expression
bnj548  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  B  =  K )
Distinct variable groups:    y, G    y, f    y, i
Allowed substitution hints:    ta( y, f, i, m, n)    si( y,
f, i, m, n)    A( y, f, i, m, n)    B( y, f, i, m, n)    C( y,
f, i, m, n)    R( y, f, i, m, n)    G( f, i, m, n)    K( y, f, i, m, n)    ph'( y, f, i, m, n)    ps'( y, f, i, m, n)

Proof of Theorem bnj548
StepHypRef Expression
1 bnj548.5 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
21bnj930 33308 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  Fun  G )
32adantr 465 . . . . 5  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  Fun  G )
4 bnj548.1 . . . . . . . 8  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
54simp1bi 1011 . . . . . . 7  |-  ( ta 
->  f  Fn  m
)
6 fndm 5686 . . . . . . . 8  |-  ( f  Fn  m  ->  dom  f  =  m )
7 eleq2 2540 . . . . . . . . 9  |-  ( dom  f  =  m  -> 
( i  e.  dom  f 
<->  i  e.  m ) )
87biimpar 485 . . . . . . . 8  |-  ( ( dom  f  =  m  /\  i  e.  m
)  ->  i  e.  dom  f )
96, 8sylan 471 . . . . . . 7  |-  ( ( f  Fn  m  /\  i  e.  m )  ->  i  e.  dom  f
)
105, 9sylan 471 . . . . . 6  |-  ( ( ta  /\  i  e.  m )  ->  i  e.  dom  f )
11103ad2antl2 1159 . . . . 5  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  i  e.  dom  f )
123, 11jca 532 . . . 4  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  ( Fun  G  /\  i  e.  dom  f ) )
13 bnj548.4 . . . . 5  |-  G  =  ( f  u.  { <. m ,  C >. } )
1413bnj931 33309 . . . 4  |-  f  C_  G
1512, 14jctil 537 . . 3  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  ( f  C_  G  /\  ( Fun 
G  /\  i  e.  dom  f ) ) )
16 3anan12 986 . . 3  |-  ( ( Fun  G  /\  f  C_  G  /\  i  e. 
dom  f )  <->  ( f  C_  G  /\  ( Fun 
G  /\  i  e.  dom  f ) ) )
1715, 16sylibr 212 . 2  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  ( Fun  G  /\  f  C_  G  /\  i  e.  dom  f ) )
18 funssfv 5887 . 2  |-  ( ( Fun  G  /\  f  C_  G  /\  i  e. 
dom  f )  -> 
( G `  i
)  =  ( f `
 i ) )
19 iuneq1 4345 . . . 4  |-  ( ( G `  i )  =  ( f `  i )  ->  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
2019eqcomd 2475 . . 3  |-  ( ( G `  i )  =  ( f `  i )  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
21 bnj548.2 . . 3  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
22 bnj548.3 . . 3  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
2320, 21, 223eqtr4g 2533 . 2  |-  ( ( G `  i )  =  ( f `  i )  ->  B  =  K )
2417, 18, 233syl 20 1  |-  ( ( ( R  FrSe  A  /\  ta  /\  si )  /\  i  e.  m
)  ->  B  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    u. cun 3479    C_ wss 3481   {csn 4033   <.cop 4039   U_ciun 4331   dom cdm 5005   Fun wfun 5588    Fn wfn 5589   ` cfv 5594    predc-bnj14 33221    FrSe w-bnj15 33225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-res 5017  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602
This theorem is referenced by:  bnj553  33436
  Copyright terms: Public domain W3C validator