Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj545 Structured version   Unicode version

Theorem bnj545 32240
Description: Technical lemma for bnj852 32266. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj545.1  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj545.2  |-  D  =  ( om  \  { (/)
} )
bnj545.3  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj545.4  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj545.5  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj545.6  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
bnj545.7  |-  ( ph"  <->  ( G `  (/) )  =  pred ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj545  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  ph" )

Proof of Theorem bnj545
StepHypRef Expression
1 bnj545.4 . . . . . . . . . 10  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
21simp1bi 1003 . . . . . . . . 9  |-  ( ta 
->  f  Fn  m
)
3 bnj545.5 . . . . . . . . . 10  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
43simp1bi 1003 . . . . . . . . 9  |-  ( si  ->  m  e.  D )
52, 4anim12i 566 . . . . . . . 8  |-  ( ( ta  /\  si )  ->  ( f  Fn  m  /\  m  e.  D
) )
653adant1 1006 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  si )  -> 
( f  Fn  m  /\  m  e.  D
) )
7 bnj545.2 . . . . . . . . 9  |-  D  =  ( om  \  { (/)
} )
87bnj529 32085 . . . . . . . 8  |-  ( m  e.  D  ->  (/)  e.  m
)
9 fndm 5621 . . . . . . . 8  |-  ( f  Fn  m  ->  dom  f  =  m )
10 eleq2 2527 . . . . . . . . 9  |-  ( dom  f  =  m  -> 
( (/)  e.  dom  f  <->  (/)  e.  m ) )
1110biimparc 487 . . . . . . . 8  |-  ( (
(/)  e.  m  /\  dom  f  =  m
)  ->  (/)  e.  dom  f )
128, 9, 11syl2anr 478 . . . . . . 7  |-  ( ( f  Fn  m  /\  m  e.  D )  -> 
(/)  e.  dom  f )
136, 12syl 16 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  (/) 
e.  dom  f )
14 bnj545.6 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
1514bnj930 32115 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  Fun  G )
1613, 15jca 532 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  si )  -> 
( (/)  e.  dom  f  /\  Fun  G ) )
17 bnj545.3 . . . . . 6  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
1817bnj931 32116 . . . . 5  |-  f  C_  G
1916, 18jctil 537 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  si )  -> 
( f  C_  G  /\  ( (/)  e.  dom  f  /\  Fun  G ) ) )
20 df-3an 967 . . . . 5  |-  ( (
(/)  e.  dom  f  /\  Fun  G  /\  f  C_  G )  <->  ( ( (/) 
e.  dom  f  /\  Fun  G )  /\  f  C_  G ) )
21 3anrot 970 . . . . 5  |-  ( (
(/)  e.  dom  f  /\  Fun  G  /\  f  C_  G )  <->  ( Fun  G  /\  f  C_  G  /\  (/)  e.  dom  f
) )
22 ancom 450 . . . . 5  |-  ( ( ( (/)  e.  dom  f  /\  Fun  G )  /\  f  C_  G
)  <->  ( f  C_  G  /\  ( (/)  e.  dom  f  /\  Fun  G ) ) )
2320, 21, 223bitr3i 275 . . . 4  |-  ( ( Fun  G  /\  f  C_  G  /\  (/)  e.  dom  f )  <->  ( f  C_  G  /\  ( (/)  e.  dom  f  /\  Fun  G ) ) )
2419, 23sylibr 212 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  si )  -> 
( Fun  G  /\  f  C_  G  /\  (/)  e.  dom  f ) )
25 funssfv 5817 . . 3  |-  ( ( Fun  G  /\  f  C_  G  /\  (/)  e.  dom  f )  ->  ( G `  (/) )  =  ( f `  (/) ) )
2624, 25syl 16 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  si )  -> 
( G `  (/) )  =  ( f `  (/) ) )
271simp2bi 1004 . . 3  |-  ( ta 
->  ph' )
28273ad2ant2 1010 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  ph' )
29 bnj545.1 . . . 4  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
30 eqtr 2480 . . . 4  |-  ( ( ( G `  (/) )  =  ( f `  (/) )  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )  ->  ( G `  (/) )  =  pred ( x ,  A ,  R ) )
3129, 30sylan2b 475 . . 3  |-  ( ( ( G `  (/) )  =  ( f `  (/) )  /\  ph' )  ->  ( G `  (/) )  =  pred ( x ,  A ,  R ) )
32 bnj545.7 . . 3  |-  ( ph"  <->  ( G `  (/) )  =  pred ( x ,  A ,  R ) )
3331, 32sylibr 212 . 2  |-  ( ( ( G `  (/) )  =  ( f `  (/) )  /\  ph' )  ->  ph" )
3426, 28, 33syl2anc 661 1  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  ph" )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    \ cdif 3436    u. cun 3437    C_ wss 3439   (/)c0 3748   {csn 3988   <.cop 3994   U_ciun 4282   suc csuc 4832   dom cdm 4951   Fun wfun 5523    Fn wfn 5524   ` cfv 5529   omcom 6589    predc-bnj14 32028    FrSe w-bnj15 32032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-res 4963  df-iota 5492  df-fun 5531  df-fn 5532  df-fv 5537  df-om 6590
This theorem is referenced by:  bnj600  32264  bnj908  32276
  Copyright terms: Public domain W3C validator