Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj543 Structured version   Unicode version

Theorem bnj543 31884
Description: Technical lemma for bnj852 31912. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj543.1  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj543.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj543.3  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj543.4  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj543.5  |-  ( si  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )
)
Assertion
Ref Expression
bnj543  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Distinct variable groups:    A, i, p, y    R, i, p, y    f, i, p, y    i, m, p   
p, ph'
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    A( x, f, m, n)    R( x, f, m, n)    G( x, y, f, i, m, n, p)    ph'( x, y, f, i, m, n)    ps'( x, y, f, i, m, n, p)

Proof of Theorem bnj543
StepHypRef Expression
1 bnj257 31693 . . . . . . 7  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
)  <->  ( ( ph'  /\  ps' )  /\  (
m  e.  om  /\  p  e.  m )  /\  f  Fn  m  /\  n  =  suc  m ) )
2 bnj268 31695 . . . . . . 7  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  f  Fn  m  /\  n  =  suc  m )  <->  ( ( ph' 
/\  ps' )  /\  f  Fn  m  /\  (
m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
31, 2bitri 249 . . . . . 6  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
)  <->  ( ( ph'  /\  ps' )  /\  f  Fn  m  /\  (
m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
4 bnj253 31690 . . . . . 6  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
)  <->  ( ( ( ph'  /\  ps' )  /\  (
m  e.  om  /\  p  e.  m )
)  /\  n  =  suc  m  /\  f  Fn  m ) )
5 bnj256 31692 . . . . . 6  |-  ( ( ( ph'  /\  ps' )  /\  f  Fn  m  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m )  <->  ( (
( ph'  /\  ps' )  /\  f  Fn  m )  /\  ( ( m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m ) ) )
63, 4, 53bitr3i 275 . . . . 5  |-  ( ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m ) )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( (
( ph'  /\  ps' )  /\  f  Fn  m )  /\  ( ( m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m ) ) )
7 bnj256 31692 . . . . . 6  |-  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  <->  ( ( ph' 
/\  ps' )  /\  (
m  e.  om  /\  p  e.  m )
) )
873anbi1i 1178 . . . . 5  |-  ( ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( (
( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m ) )  /\  n  =  suc  m  /\  f  Fn  m ) )
9 bnj543.4 . . . . . . 7  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
10 bnj170 31684 . . . . . . 7  |-  ( ( f  Fn  m  /\  ph' 
/\  ps' )  <->  ( ( ph' 
/\  ps' )  /\  f  Fn  m ) )
119, 10bitri 249 . . . . . 6  |-  ( ta  <->  ( ( ph'  /\  ps' )  /\  f  Fn  m )
)
12 bnj543.5 . . . . . . 7  |-  ( si  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )
)
13 3anan32 977 . . . . . . 7  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )  <->  ( ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
1412, 13bitri 249 . . . . . 6  |-  ( si  <->  ( ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
1511, 14anbi12i 697 . . . . 5  |-  ( ( ta  /\  si )  <->  ( ( ( ph'  /\  ps' )  /\  f  Fn  m )  /\  ( ( m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m ) ) )
166, 8, 153bitr4ri 278 . . . 4  |-  ( ( ta  /\  si )  <->  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m ) )
1716anbi2i 694 . . 3  |-  ( ( R  FrSe  A  /\  ( ta  /\  si )
)  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
) ) )
18 3anass 969 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  si )  <->  ( R  FrSe  A  /\  ( ta 
/\  si ) ) )
19 bnj252 31689 . . 3  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m ) ) )
2017, 18, 193bitr4i 277 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  si )  <->  ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
) )
21 df-suc 4724 . . . . . . 7  |-  suc  m  =  ( m  u. 
{ m } )
2221eqeq2i 2452 . . . . . 6  |-  ( n  =  suc  m  <->  n  =  ( m  u.  { m } ) )
23223anbi2i 1179 . . . . 5  |-  ( ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( ( ph' 
/\  ps'  /\  m  e. 
om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
) )
2423anbi2i 694 . . . 4  |-  ( ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m ) )  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
) ) )
25 bnj252 31689 . . . 4  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
)  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m ) ) )
2624, 19, 253bitr4i 277 . . 3  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m ) )
27 bnj543.1 . . . 4  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
28 bnj543.2 . . . 4  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
29 bnj543.3 . . . 4  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
30 biid 236 . . . 4  |-  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  <->  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m ) )
3127, 28, 29, 30bnj535 31881 . . 3  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
)  ->  G  Fn  n )
3226, 31sylbi 195 . 2  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  ->  G  Fn  n )
3320, 32sylbi 195 1  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714    u. cun 3325   (/)c0 3636   {csn 3876   <.cop 3882   U_ciun 4170   suc csuc 4720    Fn wfn 5412   ` cfv 5417   omcom 6475    /\ w-bnj17 31672    predc-bnj14 31674    FrSe w-bnj15 31678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pr 4530  ax-un 6371  ax-reg 7806
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-om 6476  df-bnj17 31673  df-bnj14 31675  df-bnj13 31677  df-bnj15 31679
This theorem is referenced by:  bnj544  31885
  Copyright terms: Public domain W3C validator