Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj528 Structured version   Visualization version   Unicode version

Theorem bnj528 29750
Description: Technical lemma for bnj852 29782. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj528.1  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
Assertion
Ref Expression
bnj528  |-  G  e. 
_V

Proof of Theorem bnj528
StepHypRef Expression
1 bnj528.1 . 2  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
21bnj918 29627 1  |-  G  e. 
_V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1455    e. wcel 1898   _Vcvv 3057    u. cun 3414   {csn 3980   <.cop 3986   U_ciun 4292   ` cfv 5605    predc-bnj14 29543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-rex 2755  df-v 3059  df-dif 3419  df-un 3421  df-nul 3744  df-sn 3981  df-pr 3983  df-uni 4213
This theorem is referenced by:  bnj600  29780  bnj908  29792
  Copyright terms: Public domain W3C validator