Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj528 Structured version   Unicode version

Theorem bnj528 29708
Description: Technical lemma for bnj852 29740. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj528.1  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
Assertion
Ref Expression
bnj528  |-  G  e. 
_V

Proof of Theorem bnj528
StepHypRef Expression
1 bnj528.1 . 2  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
21bnj918 29585 1  |-  G  e. 
_V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1872   _Vcvv 3080    u. cun 3434   {csn 3998   <.cop 4004   U_ciun 4299   ` cfv 5601    predc-bnj14 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-rex 2777  df-v 3082  df-dif 3439  df-un 3441  df-nul 3762  df-sn 3999  df-pr 4001  df-uni 4220
This theorem is referenced by:  bnj600  29738  bnj908  29750
  Copyright terms: Public domain W3C validator