Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj526 Structured version   Visualization version   Unicode version

Theorem bnj526 29699
 Description: Technical lemma for bnj852 29732. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj526.1
bnj526.2
bnj526.3
Assertion
Ref Expression
bnj526
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem bnj526
StepHypRef Expression
1 bnj526.2 . 2
2 bnj526.1 . . 3
32sbcbii 3323 . 2
4 bnj526.3 . . 3
5 fveq1 5864 . . . 4
65eqeq1d 2453 . . 3
74, 6sbcie 3302 . 2
81, 3, 73bitri 275 1
 Colors of variables: wff setvar class Syntax hints:   wb 188   wceq 1444   wcel 1887  cvv 3045  wsbc 3267  c0 3731  cfv 5582   c-bnj14 29493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-rex 2743  df-v 3047  df-sbc 3268  df-uni 4199  df-br 4403  df-iota 5546  df-fv 5590 This theorem is referenced by:  bnj607  29727
 Copyright terms: Public domain W3C validator