Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj517 Structured version   Visualization version   Unicode version

Theorem bnj517 29745
Description: Technical lemma for bnj518 29746. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj517.1  |-  ( ph  <->  ( F `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj517.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj517  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  A. n  e.  N  ( F `  n )  C_  A
)
Distinct variable groups:    i, n, y, A    i, F, n   
i, N, n
Allowed substitution hints:    ph( y, i, n)    ps( y, i, n)    R( y, i, n)    F( y)    N( y)    X( y, i, n)

Proof of Theorem bnj517
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fveq2 5888 . . . . . 6  |-  ( m  =  (/)  ->  ( F `
 m )  =  ( F `  (/) ) )
2 simpl2 1018 . . . . . . 7  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ph )
3 bnj517.1 . . . . . . 7  |-  ( ph  <->  ( F `  (/) )  = 
pred ( X ,  A ,  R )
)
42, 3sylib 201 . . . . . 6  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ( F `  (/) )  =  pred ( X ,  A ,  R ) )
51, 4sylan9eqr 2518 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  ph  /\  ps )  /\  m  e.  N
)  /\  m  =  (/) )  ->  ( F `  m )  =  pred ( X ,  A ,  R ) )
6 bnj213 29742 . . . . 5  |-  pred ( X ,  A ,  R )  C_  A
75, 6syl6eqss 3494 . . . 4  |-  ( ( ( ( N  e. 
om  /\  ph  /\  ps )  /\  m  e.  N
)  /\  m  =  (/) )  ->  ( F `  m )  C_  A
)
8 bnj517.2 . . . . . . 7  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )
9 r19.29r 2938 . . . . . . . . . 10  |-  ( ( E. i  e.  om  m  =  suc  i  /\  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )  ->  E. i  e.  om  ( m  =  suc  i  /\  ( suc  i  e.  N  ->  ( F `
 suc  i )  =  U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) ) )
10 eleq1 2528 . . . . . . . . . . . . . 14  |-  ( m  =  suc  i  -> 
( m  e.  N  <->  suc  i  e.  N ) )
1110biimpd 212 . . . . . . . . . . . . 13  |-  ( m  =  suc  i  -> 
( m  e.  N  ->  suc  i  e.  N
) )
12 fveq2 5888 . . . . . . . . . . . . . . 15  |-  ( m  =  suc  i  -> 
( F `  m
)  =  ( F `
 suc  i )
)
1312eqeq1d 2464 . . . . . . . . . . . . . 14  |-  ( m  =  suc  i  -> 
( ( F `  m )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  <->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
14 bnj213 29742 . . . . . . . . . . . . . . . . 17  |-  pred (
y ,  A ,  R )  C_  A
1514rgenw 2761 . . . . . . . . . . . . . . . 16  |-  A. y  e.  ( F `  i
)  pred ( y ,  A ,  R ) 
C_  A
16 iunss 4333 . . . . . . . . . . . . . . . 16  |-  ( U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  C_  A  <->  A. y  e.  ( F `
 i )  pred ( y ,  A ,  R )  C_  A
)
1715, 16mpbir 214 . . . . . . . . . . . . . . 15  |-  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R ) 
C_  A
18 sseq1 3465 . . . . . . . . . . . . . . 15  |-  ( ( F `  m )  =  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R )  ->  ( ( F `
 m )  C_  A 
<-> 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) 
C_  A ) )
1917, 18mpbiri 241 . . . . . . . . . . . . . 14  |-  ( ( F `  m )  =  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R )  ->  ( F `  m )  C_  A
)
2013, 19syl6bir 237 . . . . . . . . . . . . 13  |-  ( m  =  suc  i  -> 
( ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  ->  ( F `  m )  C_  A ) )
2111, 20imim12d 77 . . . . . . . . . . . 12  |-  ( m  =  suc  i  -> 
( ( suc  i  e.  N  ->  ( F `
 suc  i )  =  U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) )  ->  ( m  e.  N  ->  ( F `
 m )  C_  A ) ) )
2221imp 435 . . . . . . . . . . 11  |-  ( ( m  =  suc  i  /\  ( suc  i  e.  N  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
m  e.  N  -> 
( F `  m
)  C_  A )
)
2322rexlimivw 2888 . . . . . . . . . 10  |-  ( E. i  e.  om  (
m  =  suc  i  /\  ( suc  i  e.  N  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
m  e.  N  -> 
( F `  m
)  C_  A )
)
249, 23syl 17 . . . . . . . . 9  |-  ( ( E. i  e.  om  m  =  suc  i  /\  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )  ->  ( m  e.  N  ->  ( F `  m )  C_  A
) )
2524ex 440 . . . . . . . 8  |-  ( E. i  e.  om  m  =  suc  i  ->  ( A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) )  -> 
( m  e.  N  ->  ( F `  m
)  C_  A )
) )
2625com3l 84 . . . . . . 7  |-  ( A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) )  -> 
( m  e.  N  ->  ( E. i  e. 
om  m  =  suc  i  ->  ( F `  m )  C_  A
) ) )
278, 26sylbi 200 . . . . . 6  |-  ( ps 
->  ( m  e.  N  ->  ( E. i  e. 
om  m  =  suc  i  ->  ( F `  m )  C_  A
) ) )
28273ad2ant3 1037 . . . . 5  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  (
m  e.  N  -> 
( E. i  e. 
om  m  =  suc  i  ->  ( F `  m )  C_  A
) ) )
2928imp31 438 . . . 4  |-  ( ( ( ( N  e. 
om  /\  ph  /\  ps )  /\  m  e.  N
)  /\  E. i  e.  om  m  =  suc  i )  ->  ( F `  m )  C_  A )
30 simpr 467 . . . . . 6  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  m  e.  N )
31 simpl1 1017 . . . . . 6  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  N  e.  om )
32 elnn 6729 . . . . . 6  |-  ( ( m  e.  N  /\  N  e.  om )  ->  m  e.  om )
3330, 31, 32syl2anc 671 . . . . 5  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  m  e.  om )
34 nn0suc 6744 . . . . 5  |-  ( m  e.  om  ->  (
m  =  (/)  \/  E. i  e.  om  m  =  suc  i ) )
3533, 34syl 17 . . . 4  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ( m  =  (/)  \/  E. i  e.  om  m  =  suc  i ) )
367, 29, 35mpjaodan 800 . . 3  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ( F `  m )  C_  A
)
3736ralrimiva 2814 . 2  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  A. m  e.  N  ( F `  m )  C_  A
)
38 fveq2 5888 . . . 4  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
3938sseq1d 3471 . . 3  |-  ( m  =  n  ->  (
( F `  m
)  C_  A  <->  ( F `  n )  C_  A
) )
4039cbvralv 3031 . 2  |-  ( A. m  e.  N  ( F `  m )  C_  A  <->  A. n  e.  N  ( F `  n ) 
C_  A )
4137, 40sylib 201 1  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  A. n  e.  N  ( F `  n )  C_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   A.wral 2749   E.wrex 2750    C_ wss 3416   (/)c0 3743   U_ciun 4292   suc csuc 5444   ` cfv 5601   omcom 6719    predc-bnj14 29542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-tr 4512  df-eprel 4764  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fv 5609  df-om 6720  df-bnj14 29543
This theorem is referenced by:  bnj518  29746
  Copyright terms: Public domain W3C validator