Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj31 Structured version   Unicode version

Theorem bnj31 29099
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj31.1  |-  ( ph  ->  E. x  e.  A  ps )
bnj31.2  |-  ( ps 
->  ch )
Assertion
Ref Expression
bnj31  |-  ( ph  ->  E. x  e.  A  ch )

Proof of Theorem bnj31
StepHypRef Expression
1 bnj31.1 . 2  |-  ( ph  ->  E. x  e.  A  ps )
2 bnj31.2 . . 3  |-  ( ps 
->  ch )
32reximi 2872 . 2  |-  ( E. x  e.  A  ps  ->  E. x  e.  A  ch )
41, 3syl 17 1  |-  ( ph  ->  E. x  e.  A  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wrex 2755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-ral 2759  df-rex 2760
This theorem is referenced by:  bnj168  29112  bnj110  29243  bnj906  29315  bnj1253  29400  bnj1280  29403  bnj1296  29404  bnj1371  29412  bnj1497  29443  bnj1498  29444  bnj1501  29450
  Copyright terms: Public domain W3C validator