Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj206 Structured version   Unicode version

Theorem bnj206 32866
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj206.1
bnj206.2
bnj206.3
bnj206.4
Assertion
Ref Expression
bnj206

Proof of Theorem bnj206
StepHypRef Expression
1 sbc3an 3394 . 2
2 bnj206.1 . . . 4
32bicomi 202 . . 3
4 bnj206.2 . . . 4
54bicomi 202 . . 3
6 bnj206.3 . . . 4
76bicomi 202 . . 3
83, 5, 73anbi123i 1185 . 2
91, 8bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   w3a 973   wcel 1767  cvv 3113  wsbc 3331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-v 3115  df-sbc 3332 This theorem is referenced by:  bnj124  33008  bnj207  33018
 Copyright terms: Public domain W3C validator