Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj206 Structured version   Unicode version

Theorem bnj206 29126
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj206.1  |-  ( ph'  <->  [. M  /  n ]. ph )
bnj206.2  |-  ( ps'  <->  [. M  /  n ]. ps )
bnj206.3  |-  ( ch'  <->  [. M  /  n ]. ch )
bnj206.4  |-  M  e. 
_V
Assertion
Ref Expression
bnj206  |-  ( [. M  /  n ]. ( ph  /\  ps  /\  ch ) 
<->  ( ph'  /\  ps'  /\  ch' ) )

Proof of Theorem bnj206
StepHypRef Expression
1 sbc3an 3337 . 2  |-  ( [. M  /  n ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. M  /  n ]. ph  /\  [. M  /  n ]. ps  /\  [. M  /  n ]. ch ) )
2 bnj206.1 . . . 4  |-  ( ph'  <->  [. M  /  n ]. ph )
32bicomi 204 . . 3  |-  ( [. M  /  n ]. ph  <->  ph' )
4 bnj206.2 . . . 4  |-  ( ps'  <->  [. M  /  n ]. ps )
54bicomi 204 . . 3  |-  ( [. M  /  n ]. ps  <->  ps' )
6 bnj206.3 . . . 4  |-  ( ch'  <->  [. M  /  n ]. ch )
76bicomi 204 . . 3  |-  ( [. M  /  n ]. ch  <->  ch' )
83, 5, 73anbi123i 1188 . 2  |-  ( (
[. M  /  n ]. ph  /\  [. M  /  n ]. ps  /\  [. M  /  n ]. ch )  <->  ( ph'  /\  ps'  /\  ch' ) )
91, 8bitri 251 1  |-  ( [. M  /  n ]. ( ph  /\  ps  /\  ch ) 
<->  ( ph'  /\  ps'  /\  ch' ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 186    /\ w3a 976    e. wcel 1844   _Vcvv 3061   [.wsbc 3279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-v 3063  df-sbc 3280
This theorem is referenced by:  bnj124  29269  bnj207  29279
  Copyright terms: Public domain W3C validator