Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Structured version   Unicode version

Theorem bnj168 32054
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 7919. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj168  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
Distinct variable group:    m, n
Allowed substitution hints:    D( m, n)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
21bnj158 32053 . . . . . . . . 9  |-  ( n  e.  D  ->  E. m  e.  om  n  =  suc  m )
32anim2i 569 . . . . . . . 8  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  ( n  =/=  1o  /\ 
E. m  e.  om  n  =  suc  m ) )
4 r19.42v 2981 . . . . . . . 8  |-  ( E. m  e.  om  (
n  =/=  1o  /\  n  =  suc  m )  <-> 
( n  =/=  1o  /\ 
E. m  e.  om  n  =  suc  m ) )
53, 4sylibr 212 . . . . . . 7  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =/=  1o  /\  n  =  suc  m
) )
6 neeq1 2733 . . . . . . . . . . 11  |-  ( n  =  suc  m  -> 
( n  =/=  1o  <->  suc  m  =/=  1o ) )
76biimpac 486 . . . . . . . . . 10  |-  ( ( n  =/=  1o  /\  n  =  suc  m )  ->  suc  m  =/=  1o )
8 df-1o 7031 . . . . . . . . . . . . 13  |-  1o  =  suc  (/)
98eqeq2i 2472 . . . . . . . . . . . 12  |-  ( suc  m  =  1o  <->  suc  m  =  suc  (/) )
10 nnon 6593 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  m  e.  On )
11 0elon 4881 . . . . . . . . . . . . 13  |-  (/)  e.  On
12 suc11 4931 . . . . . . . . . . . . 13  |-  ( ( m  e.  On  /\  (/) 
e.  On )  -> 
( suc  m  =  suc  (/)  <->  m  =  (/) ) )
1310, 11, 12sylancl 662 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  ( suc  m  =  suc  (/)  <->  m  =  (/) ) )
149, 13syl5rbb 258 . . . . . . . . . . 11  |-  ( m  e.  om  ->  (
m  =  (/)  <->  suc  m  =  1o ) )
1514necon3bid 2710 . . . . . . . . . 10  |-  ( m  e.  om  ->  (
m  =/=  (/)  <->  suc  m  =/= 
1o ) )
167, 15syl5ibr 221 . . . . . . . . 9  |-  ( m  e.  om  ->  (
( n  =/=  1o  /\  n  =  suc  m
)  ->  m  =/=  (/) ) )
1716ancld 553 . . . . . . . 8  |-  ( m  e.  om  ->  (
( n  =/=  1o  /\  n  =  suc  m
)  ->  ( (
n  =/=  1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) ) )
1817reximia 2927 . . . . . . 7  |-  ( E. m  e.  om  (
n  =/=  1o  /\  n  =  suc  m )  ->  E. m  e.  om  ( ( n  =/= 
1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) )
195, 18syl 16 . . . . . 6  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( ( n  =/= 
1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) )
20 anass 649 . . . . . . 7  |-  ( ( ( n  =/=  1o  /\  n  =  suc  m
)  /\  m  =/=  (/) )  <->  ( n  =/= 
1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2120rexbii 2862 . . . . . 6  |-  ( E. m  e.  om  (
( n  =/=  1o  /\  n  =  suc  m
)  /\  m  =/=  (/) )  <->  E. m  e.  om  ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2219, 21sylib 196 . . . . 5  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
23 simpr 461 . . . . 5  |-  ( ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( n  =  suc  m  /\  m  =/=  (/) ) )
2422, 23bnj31 32041 . . . 4  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =  suc  m  /\  m  =/=  (/) ) )
25 df-rex 2805 . . . 4  |-  ( E. m  e.  om  (
n  =  suc  m  /\  m  =/=  (/) )  <->  E. m
( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2624, 25sylib 196 . . 3  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  om  /\  (
n  =  suc  m  /\  m  =/=  (/) ) ) )
27 simpr 461 . . . . . . 7  |-  ( ( n  =  suc  m  /\  m  =/=  (/) )  ->  m  =/=  (/) )
2827anim2i 569 . . . . . 6  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( m  e. 
om  /\  m  =/=  (/) ) )
291eleq2i 2532 . . . . . . 7  |-  ( m  e.  D  <->  m  e.  ( om  \  { (/) } ) )
30 eldifsn 4109 . . . . . . 7  |-  ( m  e.  ( om  \  { (/)
} )  <->  ( m  e.  om  /\  m  =/=  (/) ) )
3129, 30bitr2i 250 . . . . . 6  |-  ( ( m  e.  om  /\  m  =/=  (/) )  <->  m  e.  D )
3228, 31sylib 196 . . . . 5  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  m  e.  D
)
33 simprl 755 . . . . 5  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  n  =  suc  m )
3432, 33jca 532 . . . 4  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( m  e.  D  /\  n  =  suc  m ) )
3534eximi 1626 . . 3  |-  ( E. m ( m  e. 
om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
3626, 35syl 16 . 2  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
37 df-rex 2805 . 2  |-  ( E. m  e.  D  n  =  suc  m  <->  E. m
( m  e.  D  /\  n  =  suc  m ) )
3836, 37sylibr 212 1  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   E.wrex 2800    \ cdif 3434   (/)c0 3746   {csn 3986   Oncon0 4828   suc csuc 4830   omcom 6587   1oc1o 7024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-om 6588  df-1o 7031
This theorem is referenced by:  bnj600  32245
  Copyright terms: Public domain W3C validator