Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Structured version   Unicode version

Theorem bnj168 31608
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 7799. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj168  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
Distinct variable group:    m, n
Allowed substitution hints:    D( m, n)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
21bnj158 31607 . . . . . . . . 9  |-  ( n  e.  D  ->  E. m  e.  om  n  =  suc  m )
32anim2i 569 . . . . . . . 8  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  ( n  =/=  1o  /\ 
E. m  e.  om  n  =  suc  m ) )
4 r19.42v 2870 . . . . . . . 8  |-  ( E. m  e.  om  (
n  =/=  1o  /\  n  =  suc  m )  <-> 
( n  =/=  1o  /\ 
E. m  e.  om  n  =  suc  m ) )
53, 4sylibr 212 . . . . . . 7  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =/=  1o  /\  n  =  suc  m
) )
6 neeq1 2611 . . . . . . . . . . 11  |-  ( n  =  suc  m  -> 
( n  =/=  1o  <->  suc  m  =/=  1o ) )
76biimpac 486 . . . . . . . . . 10  |-  ( ( n  =/=  1o  /\  n  =  suc  m )  ->  suc  m  =/=  1o )
8 df-1o 6912 . . . . . . . . . . . . 13  |-  1o  =  suc  (/)
98eqeq2i 2448 . . . . . . . . . . . 12  |-  ( suc  m  =  1o  <->  suc  m  =  suc  (/) )
10 nnon 6477 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  m  e.  On )
11 0elon 4767 . . . . . . . . . . . . 13  |-  (/)  e.  On
12 suc11 4817 . . . . . . . . . . . . 13  |-  ( ( m  e.  On  /\  (/) 
e.  On )  -> 
( suc  m  =  suc  (/)  <->  m  =  (/) ) )
1310, 11, 12sylancl 662 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  ( suc  m  =  suc  (/)  <->  m  =  (/) ) )
149, 13syl5rbb 258 . . . . . . . . . . 11  |-  ( m  e.  om  ->  (
m  =  (/)  <->  suc  m  =  1o ) )
1514necon3bid 2638 . . . . . . . . . 10  |-  ( m  e.  om  ->  (
m  =/=  (/)  <->  suc  m  =/= 
1o ) )
167, 15syl5ibr 221 . . . . . . . . 9  |-  ( m  e.  om  ->  (
( n  =/=  1o  /\  n  =  suc  m
)  ->  m  =/=  (/) ) )
1716ancld 553 . . . . . . . 8  |-  ( m  e.  om  ->  (
( n  =/=  1o  /\  n  =  suc  m
)  ->  ( (
n  =/=  1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) ) )
1817reximia 2816 . . . . . . 7  |-  ( E. m  e.  om  (
n  =/=  1o  /\  n  =  suc  m )  ->  E. m  e.  om  ( ( n  =/= 
1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) )
195, 18syl 16 . . . . . 6  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( ( n  =/= 
1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) )
20 anass 649 . . . . . . 7  |-  ( ( ( n  =/=  1o  /\  n  =  suc  m
)  /\  m  =/=  (/) )  <->  ( n  =/= 
1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2120rexbii 2735 . . . . . 6  |-  ( E. m  e.  om  (
( n  =/=  1o  /\  n  =  suc  m
)  /\  m  =/=  (/) )  <->  E. m  e.  om  ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2219, 21sylib 196 . . . . 5  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
23 simpr 461 . . . . 5  |-  ( ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( n  =  suc  m  /\  m  =/=  (/) ) )
2422, 23bnj31 31595 . . . 4  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =  suc  m  /\  m  =/=  (/) ) )
25 df-rex 2716 . . . 4  |-  ( E. m  e.  om  (
n  =  suc  m  /\  m  =/=  (/) )  <->  E. m
( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2624, 25sylib 196 . . 3  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  om  /\  (
n  =  suc  m  /\  m  =/=  (/) ) ) )
27 simpr 461 . . . . . . 7  |-  ( ( n  =  suc  m  /\  m  =/=  (/) )  ->  m  =/=  (/) )
2827anim2i 569 . . . . . 6  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( m  e. 
om  /\  m  =/=  (/) ) )
291eleq2i 2502 . . . . . . 7  |-  ( m  e.  D  <->  m  e.  ( om  \  { (/) } ) )
30 eldifsn 3995 . . . . . . 7  |-  ( m  e.  ( om  \  { (/)
} )  <->  ( m  e.  om  /\  m  =/=  (/) ) )
3129, 30bitr2i 250 . . . . . 6  |-  ( ( m  e.  om  /\  m  =/=  (/) )  <->  m  e.  D )
3228, 31sylib 196 . . . . 5  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  m  e.  D
)
33 simprl 755 . . . . 5  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  n  =  suc  m )
3432, 33jca 532 . . . 4  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( m  e.  D  /\  n  =  suc  m ) )
3534eximi 1625 . . 3  |-  ( E. m ( m  e. 
om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
3626, 35syl 16 . 2  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
37 df-rex 2716 . 2  |-  ( E. m  e.  D  n  =  suc  m  <->  E. m
( m  e.  D  /\  n  =  suc  m ) )
3836, 37sylibr 212 1  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   E.wrex 2711    \ cdif 3320   (/)c0 3632   {csn 3872   Oncon0 4714   suc csuc 4716   omcom 6471   1oc1o 6905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-tr 4381  df-eprel 4627  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-om 6472  df-1o 6912
This theorem is referenced by:  bnj600  31799
  Copyright terms: Public domain W3C validator