Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1514 Structured version   Unicode version

Theorem bnj1514 29433
 Description: Technical lemma for bnj1500 29438. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1514.1
bnj1514.2
bnj1514.3
Assertion
Ref Expression
bnj1514
Distinct variable groups:   ,   ,   ,   ,,
Allowed substitution hints:   (,)   (,,)   (,,)   (,,)   (,)   (,)

Proof of Theorem bnj1514
StepHypRef Expression
1 bnj1514.3 . . . . 5
21bnj1436 29212 . . . 4
3 df-rex 2759 . . . . 5
4 3anass 978 . . . . 5
53, 4bnj133 29094 . . . 4
62, 5sylib 196 . . 3
7 simp3 999 . . . 4
8 fndm 5660 . . . . . 6
983ad2ant2 1019 . . . . 5
109raleqdv 3009 . . . 4
117, 10mpbird 232 . . 3
126, 11bnj593 29116 . 2
1312bnj937 29144 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367   w3a 974   wceq 1405  wex 1633   wcel 1842  cab 2387  wral 2753  wrex 2754   wss 3413  cop 3977   cdm 4822   cres 4824   wfn 5563  cfv 5568   c-bnj14 29054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2758  df-rex 2759  df-fn 5571 This theorem is referenced by:  bnj1501  29437
 Copyright terms: Public domain W3C validator