Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1503 Structured version   Unicode version

Theorem bnj1503 29489
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1503.1
bnj1503.2
bnj1503.3
Assertion
Ref Expression
bnj1503

Proof of Theorem bnj1503
StepHypRef Expression
1 bnj1503.1 . 2
2 bnj1503.2 . 2
3 bnj1503.3 . 2
4 fun2ssres 5633 . 2
51, 2, 3, 4syl3anc 1264 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1437   wss 3433   cdm 4845   cres 4847   wfun 5586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-br 4418  df-opab 4476  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-res 4857  df-fun 5594 This theorem is referenced by:  bnj1442  29687  bnj1450  29688  bnj1501  29705
 Copyright terms: Public domain W3C validator