Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1497 Structured version   Visualization version   Unicode version

Theorem bnj1497 29941
 Description: Technical lemma for bnj60 29943. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1497.1
bnj1497.2
bnj1497.3
Assertion
Ref Expression
bnj1497
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,,,)   (,,,)   (,,)   (,,,)   (,,,)   (,,,)

Proof of Theorem bnj1497
StepHypRef Expression
1 bnj1497.3 . . . . . 6
21bnj1317 29705 . . . . 5
32nfi 1682 . . . 4
4 nfv 1769 . . . 4
53, 4nfim 2023 . . 3
6 eleq1 2537 . . . 4
7 funeq 5608 . . . 4
86, 7imbi12d 327 . . 3
91bnj1436 29723 . . . . . 6
109bnj1299 29702 . . . . 5
11 fnfun 5683 . . . . 5
1210, 11bnj31 29597 . . . 4
1312bnj1265 29696 . . 3
145, 8, 13chvar 2119 . 2
1514rgen 2766 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 376   wceq 1452   wcel 1904  cab 2457  wral 2756  wrex 2757   wss 3390  cop 3965   cres 4841   wfun 5583   wfn 5584  cfv 5589   c-bnj14 29565 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-in 3397  df-ss 3404  df-br 4396  df-opab 4455  df-rel 4846  df-cnv 4847  df-co 4848  df-fun 5591  df-fn 5592 This theorem is referenced by:  bnj60  29943
 Copyright terms: Public domain W3C validator