Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1466 Structured version   Unicode version

Theorem bnj1466 33589
 Description: Technical lemma for bnj60 33598. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1466.1
bnj1466.2
bnj1466.3
bnj1466.4
bnj1466.5
bnj1466.6
bnj1466.7
bnj1466.8
bnj1466.9
bnj1466.10
bnj1466.11
bnj1466.12
Assertion
Ref Expression
bnj1466
Distinct variable groups:   ,,   ,,   ,   ,   ,,   ,   ,,
Allowed substitution hints:   (,,,,)   (,,,,)   (,,,,)   (,,)   (,,,,)   (,,,,)   (,,,,)   (,,,)   (,,,,)   (,,)   (,,)   (,,,)   (,,,,)   (,,,)   (,,,,)

Proof of Theorem bnj1466
StepHypRef Expression
1 bnj1466.12 . . 3
2 bnj1466.10 . . . . 5
3 bnj1466.9 . . . . . . . 8
43bnj1317 33360 . . . . . . 7
54nfcii 2619 . . . . . 6
65nfuni 4257 . . . . 5
72, 6nfcxfr 2627 . . . 4
8 nfcv 2629 . . . . . 6
9 nfcv 2629 . . . . . . 7
10 bnj1466.11 . . . . . . . 8
11 nfcv 2629 . . . . . . . . . 10
127, 11nfres 5281 . . . . . . . . 9
138, 12nfop 4235 . . . . . . . 8
1410, 13nfcxfr 2627 . . . . . . 7
159, 14nffv 5879 . . . . . 6
168, 15nfop 4235 . . . . 5
1716nfsn 4091 . . . 4
187, 17nfun 3665 . . 3
191, 18nfcxfr 2627 . 2
2019nfcrii 2621 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369   w3a 973  wal 1377   wceq 1379  wex 1596   wcel 1767  cab 2452   wne 2662  wral 2817  wrex 2818  crab 2821  wsbc 3336   cun 3479   wss 3481  c0 3790  csn 4033  cop 4039  cuni 4251   class class class wbr 4453   cdm 5005   cres 5007   wfn 5589  cfv 5594   c-bnj14 33221   w-bnj15 33225   c-bnj18 33227 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-xp 5011  df-res 5017  df-iota 5557  df-fv 5602 This theorem is referenced by:  bnj1463  33591  bnj1491  33593
 Copyright terms: Public domain W3C validator