Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj145OLD Structured version   Unicode version

Theorem bnj145OLD 34202
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) Obsolete as of 29-Dec-2018. This is now incorporated into the proof of fnsnb 6066.
Hypotheses
Ref Expression
bnj145OLD.1  |-  A  e. 
_V
bnj145OLD.2  |-  ( F `
 A )  e. 
_V
Assertion
Ref Expression
bnj145OLD  |-  ( F  Fn  { A }  ->  F  =  { <. A ,  ( F `  A ) >. } )

Proof of Theorem bnj145OLD
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 bnj142OLD 34201 . . . . 5  |-  ( F  Fn  { A }  ->  ( u  e.  F  ->  u  =  <. A , 
( F `  A
) >. ) )
2 df-fn 5573 . . . . . . . 8  |-  ( F  Fn  { A }  <->  ( Fun  F  /\  dom  F  =  { A }
) )
3 bnj145OLD.1 . . . . . . . . . . 11  |-  A  e. 
_V
43snid 4044 . . . . . . . . . 10  |-  A  e. 
{ A }
5 eleq2 2527 . . . . . . . . . 10  |-  ( dom 
F  =  { A }  ->  ( A  e. 
dom  F  <->  A  e.  { A } ) )
64, 5mpbiri 233 . . . . . . . . 9  |-  ( dom 
F  =  { A }  ->  A  e.  dom  F )
76anim2i 567 . . . . . . . 8  |-  ( ( Fun  F  /\  dom  F  =  { A }
)  ->  ( Fun  F  /\  A  e.  dom  F ) )
82, 7sylbi 195 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( Fun  F  /\  A  e.  dom  F ) )
9 funfvop 5975 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
108, 9syl 16 . . . . . 6  |-  ( F  Fn  { A }  -> 
<. A ,  ( F `
 A ) >.  e.  F )
11 eleq1 2526 . . . . . 6  |-  ( u  =  <. A ,  ( F `  A )
>.  ->  ( u  e.  F  <->  <. A ,  ( F `  A )
>.  e.  F ) )
1210, 11syl5ibrcom 222 . . . . 5  |-  ( F  Fn  { A }  ->  ( u  =  <. A ,  ( F `  A ) >.  ->  u  e.  F ) )
131, 12impbid 191 . . . 4  |-  ( F  Fn  { A }  ->  ( u  e.  F  <->  u  =  <. A ,  ( F `  A )
>. ) )
1413alrimiv 1724 . . 3  |-  ( F  Fn  { A }  ->  A. u ( u  e.  F  <->  u  =  <. A ,  ( F `
 A ) >.
) )
15 elsn 4030 . . . . 5  |-  ( u  e.  { <. A , 
( F `  A
) >. }  <->  u  =  <. A ,  ( F `
 A ) >.
)
1615bibi2i 311 . . . 4  |-  ( ( u  e.  F  <->  u  e.  {
<. A ,  ( F `
 A ) >. } )  <->  ( u  e.  F  <->  u  =  <. A ,  ( F `  A ) >. )
)
1716albii 1645 . . 3  |-  ( A. u ( u  e.  F  <->  u  e.  { <. A ,  ( F `  A ) >. } )  <->  A. u ( u  e.  F  <->  u  =  <. A ,  ( F `  A ) >. )
)
1814, 17sylibr 212 . 2  |-  ( F  Fn  { A }  ->  A. u ( u  e.  F  <->  u  e.  {
<. A ,  ( F `
 A ) >. } ) )
19 dfcleq 2447 . 2  |-  ( F  =  { <. A , 
( F `  A
) >. }  <->  A. u
( u  e.  F  <->  u  e.  { <. A , 
( F `  A
) >. } ) )
2018, 19sylibr 212 1  |-  ( F  Fn  { A }  ->  F  =  { <. A ,  ( F `  A ) >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823   _Vcvv 3106   {csn 4016   <.cop 4022   dom cdm 4988   Fun wfun 5564    Fn wfn 5565   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator