Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1452 Structured version   Unicode version

Theorem bnj1452 32041
Description: Technical lemma for bnj60 32051. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1452.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1452.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1452.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1452.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1452.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1452.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1452.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1452.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1452.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1452.10  |-  P  = 
U. H
bnj1452.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1452.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1452.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
bnj1452.14  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj1452  |-  ( ch 
->  E  e.  B
)
Distinct variable groups:    A, d, x, z    E, d, z    R, d, x, z    ch, z
Allowed substitution hints:    ps( x, y, z, f, d)    ch( x, y, f, d)    ta( x, y, z, f, d)    A( y, f)    B( x, y, z, f, d)    C( x, y, z, f, d)    D( x, y, z, f, d)    P( x, y, z, f, d)    Q( x, y, z, f, d)    R( y, f)    E( x, y, f)    G( x, y, z, f, d)    H( x, y, z, f, d)    W( x, y, z, f, d)    Y( x, y, z, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1452
StepHypRef Expression
1 bnj1452.14 . . 3  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
2 bnj1452.5 . . . . . 6  |-  D  =  { x  e.  A  |  -.  E. f ta }
3 bnj1452.7 . . . . . 6  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
42, 3bnj1212 31791 . . . . 5  |-  ( ch 
->  x  e.  A
)
54snssd 4017 . . . 4  |-  ( ch 
->  { x }  C_  A )
6 bnj1147 31983 . . . . 5  |-  trCl (
x ,  A ,  R )  C_  A
76a1i 11 . . . 4  |-  ( ch 
->  trCl ( x ,  A ,  R ) 
C_  A )
85, 7unssd 3531 . . 3  |-  ( ch 
->  ( { x }  u.  trCl ( x ,  A ,  R ) )  C_  A )
91, 8syl5eqss 3399 . 2  |-  ( ch 
->  E  C_  A )
10 elsni 3901 . . . . . . . 8  |-  ( z  e.  { x }  ->  z  =  x )
1110adantl 466 . . . . . . 7  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  { x } )  ->  z  =  x )
12 bnj602 31906 . . . . . . 7  |-  ( z  =  x  ->  pred (
z ,  A ,  R )  =  pred ( x ,  A ,  R ) )
1311, 12syl 16 . . . . . 6  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  { x } )  ->  pred ( z ,  A ,  R )  =  pred ( x ,  A ,  R ) )
14 bnj1452.6 . . . . . . . . . 10  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
1514simplbi 460 . . . . . . . . 9  |-  ( ps 
->  R  FrSe  A )
163, 15bnj835 31750 . . . . . . . 8  |-  ( ch 
->  R  FrSe  A )
17 bnj906 31921 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R ) 
C_  trCl ( x ,  A ,  R ) )
1816, 4, 17syl2anc 661 . . . . . . 7  |-  ( ch 
->  pred ( x ,  A ,  R ) 
C_  trCl ( x ,  A ,  R ) )
1918ad2antrr 725 . . . . . 6  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  { x } )  ->  pred ( x ,  A ,  R ) 
C_  trCl ( x ,  A ,  R ) )
2013, 19eqsstrd 3389 . . . . 5  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  { x } )  ->  pred ( z ,  A ,  R ) 
C_  trCl ( x ,  A ,  R ) )
21 ssun4 3521 . . . . . 6  |-  (  pred ( z ,  A ,  R )  C_  trCl (
x ,  A ,  R )  ->  pred (
z ,  A ,  R )  C_  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
2221, 1syl6sseqr 3402 . . . . 5  |-  (  pred ( z ,  A ,  R )  C_  trCl (
x ,  A ,  R )  ->  pred (
z ,  A ,  R )  C_  E
)
2320, 22syl 16 . . . 4  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  { x } )  ->  pred ( z ,  A ,  R ) 
C_  E )
2416ad2antrr 725 . . . . . . 7  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  R  FrSe  A )
25 simpr 461 . . . . . . . 8  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  z  e.  trCl ( x ,  A ,  R ) )
266, 25bnj1213 31790 . . . . . . 7  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  z  e.  A )
27 bnj906 31921 . . . . . . 7  |-  ( ( R  FrSe  A  /\  z  e.  A )  ->  pred ( z ,  A ,  R ) 
C_  trCl ( z ,  A ,  R ) )
2824, 26, 27syl2anc 661 . . . . . 6  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  pred ( z ,  A ,  R
)  C_  trCl ( z ,  A ,  R
) )
294ad2antrr 725 . . . . . . 7  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  x  e.  A )
30 bnj1125 31981 . . . . . . 7  |-  ( ( R  FrSe  A  /\  x  e.  A  /\  z  e.  trCl ( x ,  A ,  R
) )  ->  trCl (
z ,  A ,  R )  C_  trCl (
x ,  A ,  R ) )
3124, 29, 25, 30syl3anc 1218 . . . . . 6  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  trCl ( z ,  A ,  R
)  C_  trCl ( x ,  A ,  R
) )
3228, 31sstrd 3365 . . . . 5  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  pred ( z ,  A ,  R
)  C_  trCl ( x ,  A ,  R
) )
3332, 22syl 16 . . . 4  |-  ( ( ( ch  /\  z  e.  E )  /\  z  e.  trCl ( x ,  A ,  R ) )  ->  pred ( z ,  A ,  R
)  C_  E )
341bnj1424 31830 . . . . 5  |-  ( z  e.  E  ->  (
z  e.  { x }  \/  z  e.  trCl ( x ,  A ,  R ) ) )
3534adantl 466 . . . 4  |-  ( ( ch  /\  z  e.  E )  ->  (
z  e.  { x }  \/  z  e.  trCl ( x ,  A ,  R ) ) )
3623, 33, 35mpjaodan 784 . . 3  |-  ( ( ch  /\  z  e.  E )  ->  pred (
z ,  A ,  R )  C_  E
)
3736ralrimiva 2798 . 2  |-  ( ch 
->  A. z  e.  E  pred ( z ,  A ,  R )  C_  E
)
38 snex 4532 . . . . . . . 8  |-  { x }  e.  _V
3938a1i 11 . . . . . . 7  |-  ( ch 
->  { x }  e.  _V )
40 bnj893 31919 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  trCl ( x ,  A ,  R )  e.  _V )
4116, 4, 40syl2anc 661 . . . . . . 7  |-  ( ch 
->  trCl ( x ,  A ,  R )  e.  _V )
4239, 41bnj1149 31784 . . . . . 6  |-  ( ch 
->  ( { x }  u.  trCl ( x ,  A ,  R ) )  e.  _V )
431, 42syl5eqel 2526 . . . . 5  |-  ( ch 
->  E  e.  _V )
44 bnj1452.1 . . . . . 6  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
4544bnj1454 31833 . . . . 5  |-  ( E  e.  _V  ->  ( E  e.  B  <->  [. E  / 
d ]. ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R ) 
C_  d ) ) )
4643, 45syl 16 . . . 4  |-  ( ch 
->  ( E  e.  B  <->  [. E  /  d ]. ( d  C_  A  /\  A. x  e.  d 
pred ( x ,  A ,  R ) 
C_  d ) ) )
47 bnj602 31906 . . . . . . . 8  |-  ( x  =  z  ->  pred (
x ,  A ,  R )  =  pred ( z ,  A ,  R ) )
4847sseq1d 3382 . . . . . . 7  |-  ( x  =  z  ->  (  pred ( x ,  A ,  R )  C_  d  <->  pred ( z ,  A ,  R )  C_  d
) )
4948cbvralv 2946 . . . . . 6  |-  ( A. x  e.  d  pred ( x ,  A ,  R )  C_  d  <->  A. z  e.  d  pred ( z ,  A ,  R )  C_  d
)
5049anbi2i 694 . . . . 5  |-  ( ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
)  <->  ( d  C_  A  /\  A. z  e.  d  pred ( z ,  A ,  R ) 
C_  d ) )
5150sbcbii 3245 . . . 4  |-  ( [. E  /  d ]. (
d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
)  <->  [. E  /  d ]. ( d  C_  A  /\  A. z  e.  d 
pred ( z ,  A ,  R ) 
C_  d ) )
5246, 51syl6bb 261 . . 3  |-  ( ch 
->  ( E  e.  B  <->  [. E  /  d ]. ( d  C_  A  /\  A. z  e.  d 
pred ( z ,  A ,  R ) 
C_  d ) ) )
53 sseq1 3376 . . . . . 6  |-  ( d  =  E  ->  (
d  C_  A  <->  E  C_  A
) )
54 sseq2 3377 . . . . . . 7  |-  ( d  =  E  ->  (  pred ( z ,  A ,  R )  C_  d  <->  pred ( z ,  A ,  R )  C_  E
) )
5554raleqbi1dv 2924 . . . . . 6  |-  ( d  =  E  ->  ( A. z  e.  d  pred ( z ,  A ,  R )  C_  d  <->  A. z  e.  E  pred ( z ,  A ,  R )  C_  E
) )
5653, 55anbi12d 710 . . . . 5  |-  ( d  =  E  ->  (
( d  C_  A  /\  A. z  e.  d 
pred ( z ,  A ,  R ) 
C_  d )  <->  ( E  C_  A  /\  A. z  e.  E  pred ( z ,  A ,  R
)  C_  E )
) )
5756sbcieg 3218 . . . 4  |-  ( E  e.  _V  ->  ( [. E  /  d ]. ( d  C_  A  /\  A. z  e.  d 
pred ( z ,  A ,  R ) 
C_  d )  <->  ( E  C_  A  /\  A. z  e.  E  pred ( z ,  A ,  R
)  C_  E )
) )
5843, 57syl 16 . . 3  |-  ( ch 
->  ( [. E  / 
d ]. ( d  C_  A  /\  A. z  e.  d  pred ( z ,  A ,  R ) 
C_  d )  <->  ( E  C_  A  /\  A. z  e.  E  pred ( z ,  A ,  R
)  C_  E )
) )
5952, 58bitrd 253 . 2  |-  ( ch 
->  ( E  e.  B  <->  ( E  C_  A  /\  A. z  e.  E  pred ( z ,  A ,  R )  C_  E
) ) )
609, 37, 59mpbir2and 913 1  |-  ( ch 
->  E  e.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2428    =/= wne 2605   A.wral 2714   E.wrex 2715   {crab 2718   _Vcvv 2971   [.wsbc 3185    u. cun 3325    C_ wss 3327   (/)c0 3636   {csn 3876   <.cop 3882   U.cuni 4090   class class class wbr 4291   dom cdm 4839    |` cres 4841    Fn wfn 5412   ` cfv 5417    predc-bnj14 31674    FrSe w-bnj15 31678    trClc-bnj18 31680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-reg 7806  ax-inf2 7846
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-om 6476  df-1o 6919  df-bnj17 31673  df-bnj14 31675  df-bnj13 31677  df-bnj15 31679  df-bnj18 31681  df-bnj19 31683
This theorem is referenced by:  bnj1312  32047
  Copyright terms: Public domain W3C validator