Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1449 Structured version   Unicode version

Theorem bnj1449 29852
Description: Technical lemma for bnj60 29866. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1449.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1449.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1449.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1449.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1449.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1449.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1449.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1449.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1449.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1449.10  |-  P  = 
U. H
bnj1449.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1449.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1449.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
bnj1449.14  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
bnj1449.15  |-  ( ch 
->  P  Fn  trCl (
x ,  A ,  R ) )
bnj1449.16  |-  ( ch 
->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
bnj1449.17  |-  ( th  <->  ( ch  /\  z  e.  E ) )
bnj1449.18  |-  ( et  <->  ( th  /\  z  e. 
{ x } ) )
bnj1449.19  |-  ( ze  <->  ( th  /\  z  e. 
trCl ( x ,  A ,  R ) ) )
Assertion
Ref Expression
bnj1449  |-  ( ze 
->  A. f ze )
Distinct variable groups:    A, f    f, E    R, f    x, f   
y, f    z, f
Allowed substitution hints:    ps( x, y, z, f, d)    ch( x, y, z, f, d)    th( x, y, z, f, d)    ta( x, y, z, f, d)    et( x, y, z, f, d)    ze( x, y, z, f, d)    A( x, y, z, d)    B( x, y, z, f, d)    C( x, y, z, f, d)    D( x, y, z, f, d)    P( x, y, z, f, d)    Q( x, y, z, f, d)    R( x, y, z, d)    E( x, y, z, d)    G( x, y, z, f, d)    H( x, y, z, f, d)    W( x, y, z, f, d)    Y( x, y, z, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1449
StepHypRef Expression
1 bnj1449.19 . . 3  |-  ( ze  <->  ( th  /\  z  e. 
trCl ( x ,  A ,  R ) ) )
2 bnj1449.17 . . . . 5  |-  ( th  <->  ( ch  /\  z  e.  E ) )
3 bnj1449.7 . . . . . . 7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
4 bnj1449.6 . . . . . . . . 9  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
5 nfv 1751 . . . . . . . . . 10  |-  F/ f  R  FrSe  A
6 bnj1449.5 . . . . . . . . . . . 12  |-  D  =  { x  e.  A  |  -.  E. f ta }
7 nfe1 1890 . . . . . . . . . . . . . 14  |-  F/ f E. f ta
87nfn 1956 . . . . . . . . . . . . 13  |-  F/ f  -.  E. f ta
9 nfcv 2584 . . . . . . . . . . . . 13  |-  F/_ f A
108, 9nfrab 3010 . . . . . . . . . . . 12  |-  F/_ f { x  e.  A  |  -.  E. f ta }
116, 10nfcxfr 2582 . . . . . . . . . . 11  |-  F/_ f D
12 nfcv 2584 . . . . . . . . . . 11  |-  F/_ f (/)
1311, 12nfne 2756 . . . . . . . . . 10  |-  F/ f  D  =/=  (/)
145, 13nfan 1984 . . . . . . . . 9  |-  F/ f ( R  FrSe  A  /\  D  =/=  (/) )
154, 14nfxfr 1692 . . . . . . . 8  |-  F/ f ps
1611nfcri 2577 . . . . . . . 8  |-  F/ f  x  e.  D
17 nfv 1751 . . . . . . . . 9  |-  F/ f  -.  y R x
1811, 17nfral 2811 . . . . . . . 8  |-  F/ f A. y  e.  D  -.  y R x
1915, 16, 18nf3an 1986 . . . . . . 7  |-  F/ f ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x )
203, 19nfxfr 1692 . . . . . 6  |-  F/ f ch
21 nfv 1751 . . . . . 6  |-  F/ f  z  e.  E
2220, 21nfan 1984 . . . . 5  |-  F/ f ( ch  /\  z  e.  E )
232, 22nfxfr 1692 . . . 4  |-  F/ f th
24 nfv 1751 . . . 4  |-  F/ f  z  e.  trCl (
x ,  A ,  R )
2523, 24nfan 1984 . . 3  |-  F/ f ( th  /\  z  e.  trCl ( x ,  A ,  R ) )
261, 25nfxfr 1692 . 2  |-  F/ f ze
2726nfri 1925 1  |-  ( ze 
->  A. f ze )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437   E.wex 1659    e. wcel 1868   {cab 2407    =/= wne 2618   A.wral 2775   E.wrex 2776   {crab 2779   [.wsbc 3299    u. cun 3434    C_ wss 3436   (/)c0 3761   {csn 3996   <.cop 4002   U.cuni 4216   class class class wbr 4420   dom cdm 4849    |` cres 4851    Fn wfn 5592   ` cfv 5597    predc-bnj14 29488    FrSe w-bnj15 29492    trClc-bnj18 29494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rab 2784
This theorem is referenced by:  bnj1450  29854
  Copyright terms: Public domain W3C validator