Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1436 Structured version   Unicode version

Theorem bnj1436 29480
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1436.1  |-  A  =  { x  |  ph }
Assertion
Ref Expression
bnj1436  |-  ( x  e.  A  ->  ph )

Proof of Theorem bnj1436
StepHypRef Expression
1 bnj1436.1 . . 3  |-  A  =  { x  |  ph }
21abeq2i 2547 . 2  |-  ( x  e.  A  <->  ph )
32biimpi 197 1  |-  ( x  e.  A  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1867   {cab 2405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-12 1904  ax-ext 2398
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415
This theorem is referenced by:  bnj1517  29490  bnj66  29500  bnj900  29569  bnj1296  29659  bnj1371  29667  bnj1374  29669  bnj1398  29672  bnj1450  29688  bnj1497  29698  bnj1498  29699  bnj1514  29701  bnj1501  29705
  Copyright terms: Public domain W3C validator